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Preface

IEEE Radar Standard P686/D2 (Jan. 2008) defines waveform diversity as:

Adaptivity of the radar waveform to dynamically optimize the radar perfor-

mance for the particular scenario and tasks. May also exploit adaptivity in

other domains, including the antenna radiation pattern (both on transmit and

receive), time domain, frequency domain, coding domain, and polarization do-

main. As this definition indicates, the term waveform diversity does not refer

to a tangible object, but to a remote sensing paradigm. The basic elements

of the paradigm are: measurement diversity, knowledge-aided processing and

design, and transmitter adaptivity. The waveform diversity paradigm arose

from the insatiable demands for remote sensing performance that are always

present in military applications, and the application of waveform diversity has

led to many interesting and promising remote sensing concepts.

In this report we focus on some challenging problems concerning waveform

1
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Preface 2

design and diversity and propose innovative solutions.

Precisely, in Chapter 1, we consider the problem of waveform design for radar

sensors that operate in a noncooperative network. This is a system in which

multiple radars share some common features (for example, the same carrier

frequency), but they do not cooperate in the detection stage of processing

(namely, each sensor performs detection processing independently). Our goal

is to increase the performance of an element of the sensor network, and, at

the same time, to limit the interference induced by this element of interest

on remaining sensors. The resulting problem is in general Nondeterministic

Polynomial-hard, namely an optimal solution can not be calculated in polyno-

mial time. However, it is possible to relax the original problem into a Semidef-

inite Programming problem, which is convex. This last problem can easily be

solved in polynomial time. Starting from an optimal solution to the relaxed

problem, we construct a good solution of the original nonconvex problem, and

evaluate its quality via the approximation bound. The proposed technique,

referred to as “Waveform Design in Noncooperative Environment” (WDNE), en-

joys the benfits of polynomial time complexity. Finally, we analyze via simula-

tion the performance of the WDNE procedure.
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Preface 3

In Chapter 2, we deal with the problem of Pareto-optimal waveform design in

the presence of colored Gaussian noise, under a similarity and an energy con-

straint. At the design stage, we determine the optimal radar code according

the following criterion: constrained maximization of the detection performance

and constrained minimization of the (Cramer Rao Lower Bound) CRLB on the

Doppler estimation accuracy. This is tantamount to jointly maximizing two

quadratic forms under two quadratic constraints, so that the problem can be

formulated in terms of a non-convex multi-objective optimization problem. In

order to solve it, we resort to the scalarization technique, which reduces the

vectorial problem into a scalar one using a Pareto weight defining the relative

importance of the two objective functions. At the analysis stage, we assess the

performance of the proposed waveform design scheme in terms of detection

performance, region of achievable Doppler estimation accuracy, and ambigui-

ty function. In particular, we analyze the role of the Pareto weight in the

optimization process.

In Chapter 3, we consider the problem of knowledge-aided transmit signal and

receive filter design for point like target in signal-dependent clutter. We sup-

pose that the radar system has access to a (possibly dynamic) database con-
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taining a Geographical Information System (GIS), characterizing the terrain

to be illuminated, and some a-priori electromagnetic reflectivity and spectral

clutter models, allowing the raw prediction of the actual scattering environ-

ment. Hence, we devise an optimization procedure for the transmit signal and

the receive filter which sequentially improves the Signal to Interference plus

Noise Ratio (SINR). Each iteration of the algorithm, whose convergence is an-

alytically proved, requires the solution of both a convex and an hidden convex

optimization problem. The resulting computational complexity is linear with

the number of iterations and polynomial with the receive filter length. At the

analysis stage, we assess the performance of the proposed technique in the

presence of either an homogeneous ground clutter scenario or an heteroge-

neous mixed land and sea clutter environment.

In Chapter 4, a network of radars sharing the same frequency band, and using

properly coded waveforms to improve features attractive from the radar point

of view is considered. Non-cooperative games aimed at code design for max-

imization of the Signal-to-Interference-plus-Noise Ratio (SINR) of each active

radar are presented. Code update strategies are proposed, and, resorting to

the theory of potential games, the existence of Nash equilibria is analytically
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proven. In particular, we propose non-cooperative code update procedures for

the cases in which a matched filter, a minimum integrated sidelobe level filter,

and a minimum peak to sidelobe level filter is used at the receiver. The case

that the received data contain a non-negligible Doppler shift is also analyzed.

Experimental results confirm that the proposed procedures reach an equilib-

rium in few iterations, as well as that the SINR values at the equilibrium are

largely superior to those in the case in which classical waveforms are used

and no optimization of the radar code is performed.

In Chapter 5, we deal with the design of radar receive filters jointly optimized

with respect to sidelobe energy and sidelobe peaks via Pareto-optimal theory.

We prove that this criterion is tantamount to jointly minimizing two quadratic

forms, so that the design can be analytically formulated in terms of a multi-

objective optimization problem. In order to solve it, we resort to the scalariza-

tion technique, which reduces the vectorial problem into a scalar one using a

Pareto weight defining the relative importance of the two objective functions.

At the analysis stage, we assess the performance of the receive filters in cor-

respondence of different values of the Pareto weight highlighting the perfor-

mance compromises between the Integrated Sidelobe Level (ISL) and the Peak
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Sidelobe Level (PSL).

Finally, in Chapter 6, we consider the problem of cognitive transmit signal

and receive filter design for a point-like target embedded in a high reverber-

ating environment. We focus on phase-only waveforms, sharing either a con-

tinuous or a finite alphabet phase, hence we devise constrained optimization

procedures which sequentially improves the Signal to Interference plus Noise

Ratio (SINR), accounting for a similarity constraint between the transmitted

signal and a prescribed radar waveform. The computational complexity of the

proposed algorithms is linear with the number of iterations and polynomial

with the receive filter length. At the analysis stage, the performances of the

techniques are assessed in the presence of a homogeneous clutter scenario.
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Chapter 1

Waveform Design for

Noncooperative Radar Networks

1.1 Introduction

In the last decade, the importance of radar has grown progressively with

the increasing dimension of the system: from a single colocated antenna to

a large sensor network [1]. The concept of heterogeneous radars working to-

gether has been thoroughly studied, opening the door to the the concept of

Multiple-Input-Multiple-Output (MIMO) radar [2] [3], Over-The-Horizon (OTH)

radar networks [4], and Distributed Aperture Radar (DAR) [5] [6]. These three

7
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1.1 Introduction 8

scenarios are examples of cooperative radar networks, in the sense that every

single element contributes to the overall detection process. Unfortunately, in

many practical situations, it is not possible to design the network a-priori. As

such, the elements are just simply added to the already existing network (plug

and fight), and each sensor exhibits its own detection scheme. This is the

case in noncooperative radar networks [7] [77]. In this scenario, it becomes

extremely important that each additional sensor interferes as little as possible

with the pre-existing elements, and, to this end, some techniques are easily

adopted. The usual approaches rely upon the employment of spatial and/or

frequency diversity: the former resorts to forming multiple orthogonal beams,

while the latter uses separated carrier frequencies to reduce interference [9]

[10]. Another possibility is to exploit waveform diversity [32]: in which the

basic concept is to suitably modulate the waveform of the new sensor so as

to optimize the detection capabilities of the specific sensor, but, at the same

time, controlling the interference introduced into the network. Notice that this

is different from the approach employed in cooperative sensor network, where

one must design waveforms so as to optimize the joint performance of the

system [11] [12]. In the noncooperative case, the optimization of radar wave-
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1.1 Introduction 9

forms has been discussed in the literature [13] and [14]. In the former, the

design is based upon the maximization of the global Signal-to-Interference-

Plus-Noise Ratio (SINR), and classic constraints such as phase-only or finite

energy are considered [13]. In the latter, the problem of parameter estimation

(e.g. direction of arrival) for a noncooperative radar is analyzed [14].

In this report, we propose a different approach: we maximize the Signal-to-

Noise Ratio (SNR), but at the same time, we control the interference induced

by our sensor on the other elements of the network. Furthermore, we ap-

ply a constraint to the transmitted signal, limiting the energy to a specific

maximum value. The resulting problem is Nondeterministic Polynomial (NP)

-hard, namely an optimal solution can not be found in polynomial time. Since

an optimal approach is not possible for real-time applications, we propose

a new algorithm, referred to as WDNE (Waveform Design in Noncooperative

Environment), to generate a suboptimal solution with a polynomial time com-

putational complexity. The procedure is based on the relaxation and randomi-

zation theory [15]: first we relax the feasible set of the problem, obtaining a

solution; then we use this solution to generate a waveform that is feasible

for our original problem. The quality of the solution is guaranteed by the ap-
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1.1 Introduction 10

proximation bound that ensures that the WDNE technique achieves at least a

fraction R ∈ (0, 1] of the optimal value of the relaxed problem [16].

This chapter is organized as follows. In Section 1.2, we present a model for

the generic signal received by an element of the network. In Section 1.3, we

discuss some relevant guidelines for waveform design. In Section 1.4, we in-

troduce the optimization procedure. In Section 1.5, we analyze via simulation

the performance of the proposed waveform design method. Finally, in Section

1.6, we draw conclusions and outline possible future research tracks.

1.1.1 Notation

We adopt the following notation: boldface for vectors a (lower case), and

matrices A (upper case). a(i) for i = 0, . . . , N − 1 is the i-th element of the

N−dimensional vector a, while A(n,m) for (n,m) ∈ {0, . . . , N − 1}×{0, . . . ,M − 1}

is the (n,m)-th entry of the N × M matrix A. The transpose, the conjugate

transpose, and the conjugate operators are denoted by the symbols (·)T , (·)†,

and (·)∗ respectively. tr(·), rank(·), λmin(·), and λmax(·) are the trace, the rank,

the minimum eigenvalue, and the maximum eigenvalue of the square matrix

argument, respectively. I and 0 denote the identity matrix and the matrix with
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1.2 System Model 11

zero entries (their size is determined from the context). diag(x) represents a

diagonal matrix with diagonal entries x(0), . . . , x(N − 1). The letter j denotes

the imaginary unit (i.e. j =
√
−1). For a complex number x, |x| is the modulus

and x∗ is the conjugate of x. ||.|| denotes the Euclidean norm of a complex

vector. The symbol ⊙ represents the Hadamard element-wise product [17]. E[·]

denotes statistical expectation. Finally, the curled inequality symbol � (and

its strict form ≻) is used to denote generalized inequality: A � 0 means that A

is an Hermitian positive semidefinite matrix (A ≻ 0 for positive definiteness).

1.2 System Model

We consider a network of L noncooperative monostatic radar systems, where

each sensor transmits a coherent burst of pulses

sl(t) = atxl ul(t) exp[j(2πft+ φl)] , l = 0, . . . , L− 1 ,

with atxl the transmit signal amplitude,

ul(t) =

N−1∑

i=0

cl(i)p(t− iTr)
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1.2 System Model 12

the signal’s complex envelope, p(t) the single pulse shape of the transmitted

signal, assumed of duration Tp and with unit energy, i.e.

∫ Tp

0

|p(t)|2dt = 1 ,

Tr (Tr > Tp) is the pulse repetition period (see also Figure 1.1), cl = [cl(0), cl(1), . . . ,

cl(N − 1)]T ∈ CN the radar code associated with the l-th sensor, f is the car-

rier frequency, and φl a random phase associated with the l-th transmitted

waveform. In other words, we are considering a network of noncooperative

homogeneous sensors, which do not cooperate in the detection process, yet

exploit the same kind of waveform, namely a linearly coded pulse train with

possibly different codes. Assume that the 0-th sensor is the radar of interest:

the received signal under the alternative hypothesis (target presence) is the

sum of L transmitted signals scattered by the target. Each term of this sum

has a characteristic amplitude, delay and Doppler shift (which depend both

on the l-th transmitter and the 0-th receiver), so we can express the signal
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1.2 System Model 13

received by the radar sensor of interest as

r0(t) =

L−1∑

l=0

αrx0,le
j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) , (1.1)

where n0(t) is an additive disturbance due to clutter and thermal noise, αrx0,l,

τ0,l, and f0,l, l ∈ {0, . . . , L − 1} are respectively the complex echo amplitude

(accounting for the transmit amplitude, phase, target reflectivity, and channel

propagation effects), the delay, and the target Doppler frequency relative to the

l-th transmitter and the 0-th receiver. No synchronization is assumed among

the sensors, namely τ0,l, l = 1, . . . , L−1, is considered unknown to the 0-th radar

system. To simplify the notation, we use the symbol γ0 instead of γ0,0 when

the index of the receiver (first index) is equal to the index of the transmitter

(second index), where γ0,l can be one of the parameters αrx0,l, τ0,l, or f0,l. We can

separate in the Right Hand Side (RHS) of equation (1.1) the term due to the

0-th transmitter:

r0(t) = αrx0 e
j2π(f+f0)(t−τ0)u0(t− τ0) +

L−1∑

l=1

αrx0,le
j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) .
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This signal is down-converted to baseband and filtered through a linear system

with impulse response h(t) = p∗(−t). Let the filter output be

v0(t) = αrx0 e
−j2πfτ0

N−1∑

i=0

c0(i)e
j2πif0Trχp (t− iTr − τ0, f0) +

L−1∑

l=1

αrx0,le
−j2πfτ0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (t− iTr − τ0,l, f0,l) + w0(t)

where χp(λ, ν) is the (pulse waveform) ambiguity function [18], i.e.

χp(λ, ν) =

∫ +∞

−∞
p(β)p∗(β − λ)ej2πνβdβ,

and w0(t) is the down-converted and filtered disturbance. The signal v0(t) is

sampled at tk = τ0 + kTr, k = 0, . . . , N − 1, providing the observables

v0(tk) = α0c0(k)e
j2πkf0Trχp(0, f0) +

L−1∑

l=1

α0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(k − i), f0,l) + w0(tk) ,

where α0,l = αrx0,le
−j2πfτ0,l, with l ∈ {0, . . . , L − 1} (again, we use the simplified

notation α0 = α0,0), and ∆τ0,l(h) = hTr − τ0,l + τ0, l = 1, . . . , L − 1. Moreover,
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1.2 System Model 15

denoting by

p0,l = [1, ej2πf0,lTr , . . . , ej2π(N−1)f0,lTr ]T

the temporal steering vector (with p0 = p0,0),

v0 = [v0(t0), v0(t1), . . . , v0(tN−1)]
T ,

w0 = [w0(t0), w0(t1), . . . , w0(tN−1)]
T ,

and

i0,l =

[
N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(−i), f0,l) , . . . ,

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(N − 1− i), f0,l)

]T
,

we get the following vectorial model for the scattered signal

v0 = α0χp(0, f0)c0 ⊙ p0 +
L−1∑

l=1

α0,li0,l +w0 . (1.2)

In (4.1), we can distinguish the first term due to the 0-th radar (α0χp(0, f0)c0 ⊙

p0), the second term due to the interference induced by the other radars
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(
∑L−1

l=1
α0,li0,l), and, finally, the disturbance (w0) accounting for clutter and

thermal noise.

Moreover, since χp(t, ν) = 0 , for |t| ≥ Tp , the vector i0,l shares a structure

which belongs to the finite set A0,l (of cardinality 2N ) whose elements are




cl(N − 1)ej2π(N−1)f0,lTr

0

...

0




χp (∆τ0,l(−N + 1), f0,l) ,
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


cl(N − 2)ej2π(N−2)f0,lTr

cl(N − 1)ej2π(N−1)f0,lTr

0

...

0




χp (∆τ0,l(−N + 2), f0,l) ,

...




cl(0)

cl(1)e
j2πf0,lTr

...

cl(N − 1)ej2π(N−1)f0,lTr




χp (∆τ0,l(0), f0,l) ,

...
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


0

...

0

cl(0)

cl(1)e
j2πf0,lTr




χp (∆τ0,l(N − 2), f0,l) ,




0

...

0

cl(0)




χp (∆τ0,l(N − 1), f0,l) ,

and the N-dimensional vector 0. Defining ĩ0,l

ĩ0,l =
[
cl(0), cl(1)e

j2πf0,lTr . . . , cl(N − 1)ej2π(N−1)f0,lTr
]T

= (cl ⊙ p0,l)
T ,
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and

i0,l(h) = Jhĩ0,lχp (∆τ0,l(h), f0,l) ,
(1.3)

with Jh the N ×N matrix whose entries are

Jh(i, j) =





1 i− j = h

0 elsewhere

with −N + 1 ≤ h ≤ N − 1, the set A0,l can be compactly written as

A0,l =

{
i0,l(h)

}

−N+1≤h≤N−1

⋃
0 .
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Figure 1.1: Coded pulse train ul(t) for N = 3, duty cycle= Tp/Tr = 1/2, and p(t) with

rectangular shape.

1.3 Problem Formulation

In this section, we formulate the problem of designing the code used by

the sensor of interest. The design principle is the maximization of the SNR for

the sensor of interest (the 0-th), mitigating the mutual interference induced by

the sensor of interest on other sensors in the network, and forcing an energy

constraint. To this end, it is necessary to introduce explicitly the definition of

SNR and the constraints which are required to control the mutual interference

and the transmitted energy.
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1.3.1 Signal-to-Noise Ratio

Assuming that the disturbance wm, for m = 0, . . . , L−1, is a zero-mean com-

plex circular Gaussian vector with known positive definite covariance matrix

E[wmw
†
m] = M ,

it is known that the Generalized Likelihood Ratio Test (GLRT) for the detection

of a target component c0⊙p0 with unknown complex amplitude in the presence

of w0 only (i.e. in the absence of mutual interference among the sensors), is

given by

|v†
0g0|2 = |v†

0M
−1(c0 ⊙ p0)|2

H1
>
<
H0

G ,

where g0 = M−1 (c0 ⊙ p0) is the 0-th pre-processed steering vector, and G is the

detection threshold, set according to a desired value of the false alarm Proba-

bility (Pfa). This decision rule also coincides with the optimum test (according

to the Neyman-Pearson criterion) if the phase of α0 is uniformly distributed in

[0, 2π[ [19]. From a geometric point of view, it is tantamount to projecting the

received vector on the pre-processed steering direction and then comparing

the energy of the projection with a threshold. An analytical expression of the
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detection Probability (Pd), for a given value of Pfa, is available. Precisely, for

nonfluctuating targets,

Pd = Q

(√
2|α0χp(0, f0)|2(c0 ⊙ p0)

†M−1(c0 ⊙ p0),Ψ

)
,

where Q(·, ·) denotes the Marcum Q function of order 1, and Ψ =
√

−2 lnPfa.

This last expression shows that, given Pfa, Pd depends on the radar code, the

disturbance covariance matrix, and the temporal steering vector only through

the SNR, defined as

SNR = |α0χp(0, f0)|2(c0 ⊙ p0)
†M−1(c0 ⊙ p0) .

Moreover, Pd is an increasing function of SNR and, as a consequence, the

maximization of Pd can be obtained maximizing

(c0 ⊙ p0)
†M−1(c0 ⊙ p0) = c

†
0Rf0c0 (1.4)

 
Distribution A:  Approved for public release; distribution is unlimited.
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over the radar code c0, with

Rf0 = M−1 ⊙ (p0p
†
0)

∗ . (1.5)

Evidently, (1.5) requires the specification of f0; as a consequence, the solu-

tion depends on this pre-assigned value. It is thus necessary to provide some

guidelines on the importance and the applicability of the proposed framework.

To this end, we highlight that:

• the matched performance (namely when the actual Doppler is exactly f0)

which can be obtained through the optimal solution of (1.4), represents

an upper bound to that achievable by any practical system;

• a single coded waveform designed for the challenging condition of slowly

moving targets (i.e. f0 ≃ 0) can be devised;

• a single coded waveform optimized over an average scenario may be de-

signed. Otherwise stated, this code might be chosen so as to maximize

(1.4) with Rf0 replaced by Ra = M−1 ⊙
(
E
[
p0p

†
0

])∗
, where the expectation

operator is over the normalized Doppler frequency. If this last quantity is

modeled as a uniformly distributed random variable, i.e. f0Tr ∼ U (−ǫ, ǫ),
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with 0 < ǫ < 1/2, the expectation can be readily evaluated, leading to

Ra = M−1 ⊙Σǫ , (1.6)

where Σǫ(m,n) = sinc [2ǫ(m− n)], and sinc(x) = sin(πx)
πx

.

Summarizing, we can express the objective function as

c
†
0Rc0 , (1.7)

with R equal to Ra or Rf0 according to the chosen design context. We highlight

that in both cases R ≻ 0, since R is the Hadamard product of a positive definite

matrix (M−1) and a positive semidefinite matrix with positive diagonal entries

(p0p
†
0 or Σǫ) [20].

1.3.2 Mutual Interference Constraints

To mitigate interference induced by the 0-th sensor, we force our code to

produce a small energy level when projected on the l-th pre-processed steering

vector, namely on the receiving direction of the l-th sensor. Otherwise stated,
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we impose the design constraints

E
[
|i†l,0gl|2

]
≤ δ̂l, l = 1, . . . , L− 1 , (1.8)

where δ̂l > 0 are parameters ruling the acceptable levels of interference: the

smaller δ̂l, the smaller the interference of the radar of interest on the l-th

sensor.

As indicated in (1.3), il,0 depends on the particular shift h, i.e. il,0 = il,0(h);

hence, in order to circumvent this drawback, we can resort to an average

approach, imposing the constraint on the average of all the admissible nonzero

il,0(h) (assumed equiprobable), i.e. (1.8) becomes

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
≤ δ̂l(2N − 1), l = 1, . . . , L− 1 . (1.9)

As to the expectation operator, it acts over the parameters τl,0, τl, fl,0 and fl, for

l = 1, . . . , L−1, which are practically unknown, and can be reasonably modeled

as random variables. Now,

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
= E

[
N−1∑

h=−N+1

|i†l,0(h)M−1(cl ⊙ pl)|2
]
≤ δ̂l(2N − 1) , (1.10)
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or equivalently

E

[
N−1∑

h=−N+1

i
†
l,0(h)M

−1(cl ⊙ pl)(cl ⊙ pl)
†M−1il,0(h)

]
≤ δl,

for l = 1, . . . , L− 1, with δl = δ̂l(2N − 1). Hence, denoting by

Sl = M−1diag(cl)plp
†
ldiag(c∗l )M

−1 ,

the constraints can be recast as

E

[
N−1∑

h=−N+1

i
†
l,0(h)Slil,0(h)

]
≤ δl, l = 1, . . . , L− 1 . (1.11)

According to (1.3),

il,0(h) = Jh(c0 ⊙ pl,0)χp(∆τl,0(h), fl,0) =
(
Jhc0 ⊙ Jhpl,0

)
χp(∆τl,0(h), fl,0) ,

so (1.11) becomes

E

[
N−1∑

h=−N+1

c
†
0J

†
hSl,hJhc0

]
≤ δl, l = 1, . . . , L− 1 ,
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with Sl,h = |χp(∆τl,0(h), fl,0)|2Sl ⊙
(
Jhpl,0p

†
l,0J

†
h

)∗
. Moreover, denoting by

Rl =

N−1∑

h=−N+1

J
†
hE [Sl,h]Jh, l = 1, . . . , L− 1 ,

the mutual interference constraint (1.9) can be expressed as

c†0Rlc0 ≤ δl , l = 1, . . . , L− 1 . (1.12)

Notice that the constraints in (1.12) can be evaluated, assuming a suitable

model for the random variables fl,0, fl, τl,0 and τl, with l = 1, . . . , L−1. Assuming

fl, fl,0, τl and τl,0 statistically independent, we can factorize E [Sl,h] as

E [Sl,h] = C l ⊙Hh ,

where the term C l depends on the code cl, while the term Hh depends on the

shift h. In particular,

C l = E [Sl] = M−1diag(cl)E
[
plp

†
l

]
diag(c∗l )M

−1 ,
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and

Hh = E
[
|χp(∆τl,0(h), fl,0)|2

(
Jhpl,0p

†
l,0J

†
h

)∗]
.

Moreover, assuming the normalized Doppler frequencies flTr uniformly dis-

tributed in the interval [−∆,∆], i.e. flTr ∼ U (−∆,∆), with 0 < ∆ < 1/2, we

get

E
[
plp

†
l

]
= Σ∆ .

1.3.3 Energy Constraint

It remains to force a constraint on the transmitted energy by the radar of

interest, namely we suppose that the normalized code energy is less than or

equal to N , i.e.

‖c0‖2 ≤ N . (1.13)
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1.4 Code Design

1.4.1 Equivalent Problem Formulations

Now, according to (1.7), (1.12), and (1.13), we can formulate the code design

in terms of the following Quadratic optimization Problem (QP)

QP





maximize
c0

c0
†Rc0

subject to c0
†Rlc0 ≤ δl, l = 1, . . . , L− 1

c0
†c0 ≤ N .

(1.14)

Letting Rδl = δ−1
l Rl, for l = 1, . . . , L− 1, problem (1.14) can be recast as

QP





maximize
c0

c0
†Rc0

subject to c0
†Rδlc0 ≤ 1, l = 0, . . . , L− 1

(1.15)

with Rδ0 = N−1I. Now, we have a homogeneous quadratic optimization prob-

lem defined in complex field CN . Moreover, Rδl are positive semidefinite matri-
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ces. The equivalent matrix formulation of QP is

QP





maximize
C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 = c0c
†
0

(1.16)

Unfortunately, in general this problem is NP-hard (there are some exception

when L ≤ 3) [16] [21]. One approach to approximating the solution to the

NP-hard quadratic programs is the relaxation and randomization technique

[15]: first relax the feasible solution set of the problem, obtaining a Convex

Problem (CP) that can be solved in polynomial time through the interior point

methods1; then use the optimal solution of the relaxed problem to produce a

random feasible solution for the original problem.

In the following, we present the WDNE procedure to obtain a good solution

of the original problem (1.14), and report the approximation bound [16],[21].

1The interior point methods are iterative algorithms which terminate once a pre-specified
accuracy ζ is reached. The number of iterations necessary to achieve convergence usually
ranges between 10 and 100 [22].
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1.4.2 Relaxation and Randomization

Problem (1.16) can be relaxed into the following Semidefinite Programming

(SDP) problem CP

CP





maximize
C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 � 0

(1.17)

obtained removing the rank-one constraint from (1.16) An SDP is a convex

problem which can be solved using interior point methods [22], so CP can be

easily solved in polynomial time, obtaining the optimal solution C (the fact

that the optimal value of CP is attainable is proved in Appendix).

Now if rank(C) = 1 then C = cc† and, as a consequence, c is optimal for

(1.15). Otherwise, we can obtain a good feasible solution of (1.15) through the

following randomization procedure [16, 21]:

1. Simulate ξ as a complex normal random vector with zero-mean and co-

variance matrix C, i.e. ξ ∼ CN
(
0,C

)
.
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2. Let

cξ =
ξ√

max
0≤l≤L−1

ξ†Rδlξ

,

The last step can be possibly repeated P times and one can take the instance

of cξ leading to the highest objective function. Usually, with a modest number

of randomizations2 , it is possible to achieve an accurate approximation of the

optimal solution [23] [24].

1.4.3 Approximation Bound

A “measure of goodness” of the randomization algorithm is provided by the

approximation bound which characterizes the quality of the produced solu-

tions. In the literature, a randomized approximation method for a maximiza-

tion problem has a bound (or performance guarantee, or worst case ratio)

R ∈ (0, 1], if for all instances of the problem, it always delivers a feasible so-

lution whose expected value is at least R times the maximum value of the

relaxed problem [15].

2In Chapter 1.5, we have set P = 10.
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With reference to the WDNE algorithm, we have

R× v(CP) ≤ v
WDNE

(QP) ≤ v(CP) ,

where R is the approximation parameter, v(CP) is the optimal value of CP,

and v
WDNE

(QP) is the objective value of QP achieved by the WDNE algorithm.

It has been proven in [21][p. 173, Theorem 10.1.2] that the approximation

parameter for this technique is

R =
1

ln (34µ)
,

where µ =

L−1∑

l=0

min
{

rank(Rδl),
√
L
}

.

However, we remark that the approximation bound is a worst-case result

[15], and, in practice, the actual performance v
WDNE

(QP) might be substan-

tially better than the lower bound R×v(CP) (see Chapter 1.5.1): such behavior

is quite common for randomized techniques [23] [24].

Summarizing, the WDNE procedure to generate a good solution c
WDNE

of

problem (1.14), can be formulated as reported in Algorithm 1.
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Algorithm 1 Waveform Design in Noncooperative Environment (WDNE)

Input: R, Rδl for l = 0, . . . , L− 1;

Output: c
WDNE

;

1: solve CP finding an optimal solution C;

2: evaluate r = rank(C);

3: if r = 1 then

4: decompose C = cc†;

5: set c
WDNE

= c;

6: else

7: generate ξ ∼ CN
(
0,C

)
;

8: set

c
WDNE

=
ξ√

max
0≤l≤L−1

ξ†Rδlξ

;

9: end

1.5 Performance Analysis

The present section discusses the performance of the proposed waveform

design scheme. The analysis is conducted in terms of normalized average3

SNR, SNRnorm (sub-section 1.5.1) and average normalized interference level

induced by the m-th sensor on the l-th one I lm (sub-section 1.5.2), respectively

defined as

SNRnorm =
E
ξ

[
c
†
0Rc0

]

Nλmax (R)
,

3The average is performed over 100 trials, so as to make the result independent of the
specific randomization ξ.
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and

I lm =
Eξ
[
c†mRlcm

]

Nλmax (Rl)
.

Notice that Nλmax (R) can be viewed as the optimal value of the Unconstrained

Problem (UP),

UP





maximize
c0

c
†
0Rc0

subject to c0
†c0 ≤ N

where the constraints on the interference have been removed. Obviously, the

optimal value v(UP) is greater than the optimal value of the problem QP, i.e.

v(UP) ≥ v(QP), and, as a consequence, SNRnorm ≤ 1. Sub-section 1.5.3 illus-

trates the computational complexity of the proposed algorithm.

Finally, we assume that the disturbance covariance matrix is exponentially

shaped with one-lag correlation coefficient ρ = 0.95, i.e.

M(m,n) = ρ|m−n| , (m,n) ∈ {0, . . . , N − 1}2.

Moreover, we choose the pulse p(t) with rectangular shape, and duty cycle

Tp/Tr = 1/3. Finally, we model the normalized delay ∆τm,l(h)/Tr and the nor-
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malized Doppler shift fm,lTr as independent random variables, uniformly dis-

tributed in the interval [−1, 1] and [−0.3, 0.3] respectively, i.e. ∆τm,l(h)/Tr ∼

U (−1, 1) and fm,lTr ∼ U (−0.3, 0.3). The convex optimization MATLAB c© toolbox

SeDuMi [25] is exploited to solve the SDP relaxation.

1.5.1 Maximization of the SNR

In this sub-section, we analyze the effect of three different parameters on

the SNRnorm : normalized Doppler shift on the reference sensor, length of the

code, number of interfering sensors. We consider the case of a WDNE code c0

of length N , and temporal steering vector p0 with a known normalized Doppler

shift fd = f0Tr, i.e.

p0 =
[
1, ej2πfd, . . . , ej2πfd(N−1)

]T
.

All the acceptable interfering levels δl with l = 1, . . . , L − 1, are set equal to δ,

defined as

δ = δnorm (Λmax − Λmin) + Λmin ,
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where

Λmax = min
l=1,...,L−1

{Nλmax (Rl)} ,

Λmin = max
l=1,...,L−1

{Nλmin (Rl)} ,

and δnorm ∈ (0, 1).

Finally, the operating environment has L − 1 = 4 interfering sensors. All

the interfering radars use a phase code with the same length and the same

maximum energy4 as our WDNE code. In particular, the first radar uses a

Barker code, the second a generalized Barker code, the third a Zadoff code,

and the fourth a P4 code [18].

In Figure 1.2, we plot SNRnorm versus δnorm for N = 13, L = 5, and four

different values of fd. For comparison purposes, we also plot SNRnorm of a

Barker code of length 13. As expected, the higher δnorm the higher SNRnorm:

this can be easily explained observing that increasing δnorm is tantamount to

enlarging the feasibility region, so higher and higher optimal values can be

found. It is also noticeable that WDNE codes outperforms the classical Barker

code for δnorm ≥ 0.3. Finally, at any Doppler frequency the SNRnorm of the

WDNE algorithm for δnorm → 1 almost reaches the maximum (i.e. SNRnorm = 0

4We recall that the maximum code energy of our WDNE code is equal to N , as required by
(1.13).
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dB).

In Figure 1.3, we illustrate the effect of the length N on the code. In

particular, we consider the normalized Doppler frequency fd = 0.15, L = 5

sensors in the network, while the length N of the code c0 can be 4, 5, 7, or

13. For comparison purpose, we plot the SNRnorm of a Barker code of length

13. In particular, we plot SNRnorm versus δnorm for the considered values of

N . Evidently, increasing N leads to higher values of SNRnorm. This can be

explained observing that the parameter N rules the energy constraint: the

higher N , the higher the maximum energy. Moreover, increasing N enlarges

the number of degrees of freedom. Finally, we can observe that the WDNE code

of length 13 outperforms the Barker code of the same length for δnorm ≥ 0.1.

In Figure 1.4, we analyze the effect of the size L of the network. We

plot SNRnorm versus δnorm with normalized Doppler frequency fd = 0.15, length

N = 7, and different values of L. In this figure, we also plot SNRnorm of a Barker

code of length 7. The curves show that increasing the dimension of the net-

work, leads to degraded performance. In fact, increasing L reduces feasibility

region of the optimization problem, so lower and lower optimal values may be

achieved. It can also be observed that for high values of δnorm, the algorithm
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reaches the maximum value of SNRnorm (i.e. v(UP) = v
WDNE

(QP)), and even

for small values of δnorm (i.e. δnorm = 0.1) the WDNE code exhibits a gain of

at least 1 dB over the classic Barker code. Summarizing, there is a trade-off

between the SNRnorm of the sensor of interest and the interference induced on

the remaining sensors: δnorm is the parameter that rules this relationship.

Now, we study the robustness of the proposed algorithm, considering a

mismatch between the nominal steering vector p0 with fd = 0.15 (assumed to

design the code) and the actual steering vector

pF =
[
1, ej2πF , . . . , ej2πF (N−1)

]T
,

with F representing the actual normalized Doppler frequency. We also analyze

the WDNE version of the code with R = Ra, as indicated in (2.17), assuming

ǫ = 0.2. To evaluate the performance of the algorithm, we consider the actual

average normalized SNR, defined as

SNRF =
E
ξ

[
c
†
0RFc0

]

Nλmax (RF )
,

where RF = M−1 ⊙
(
pFp

†
F

)∗
.
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In Figure 1.5, we plot SNRF versus F for δnorm = 0.9, N = 13 and L = 5.

For comparison purpose, we plot the performance of the Barker code of length

13. The classic version of the proposed code (i.e. with R = Rf0) outperforms

the Barker code when the effective normalized Doppler frequency F is close to

the nominal value fd. On the contrary, the average version of WDNE (i.e. with

R = Ra) achieves an higher value of SNRF than the Barker code in the interval

[−0.2,+0.2]. As expected, this robustness has a price: a loss of 1 dB in the case

of perfect knowledge of the steering vector (i.e. F = 0.15).
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Figure 1.2: SNRnorm versus δnorm for N = 13, L = 5, and some normalized Doppler

shifts fd, i.e. fd ∈ {0; 0.05; 0.10; 0.15} (solid curves). Barker code of length 13 (dotted

line).
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Figure 1.3: SNRnorm versus δnorm for L = 5, normalized Doppler shift fd = 0.15, and

some values of N , i.e. N ∈ {4; 5; 7; 13} (solid curves). Barker code of length 13 (dotted

line).
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Figure 1.4: SNRnorm versus δnorm for N = 7, normalized Doppler shift fd = 0.15, and

some values of L, i.e. L ∈ {2; 3; 4; 5} (solid curves). Barker code of length 7 (dotted

line).
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Figure 1.5: SNRF versus F for δnorm = 0.9, N = 13, L = 5. Barker code of length 13

(dotted curve). Robust (i.e. R = Ra with fd ∼ U(−0.2, 0.2) ) WDNE code (dot-dashed

curve). Matched (i.e. R = Rf0 with fd = 0.15) WDNE code (solid curve).
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1.5.2 Control of the induced interference

In this sub-section, we analyze the behavior of the induced interference

I lm for different network scenarios. In the first case, we study an operating

environment with three pre-existing radar sensors, which use a Barker code

(c1), a generalized Barker code (c2), and a Zadoff code (c3) respectively.

In Figure 1.6a, we plot the interference induced on the Barker code c1 (i.e.

I1m, with m ∈ {0, 2, 3}) versus δnorm, for normalized Doppler frequency fd = 0.15,

and length N = 4. In particular, we plot the interference induced by our code

(I10 ), and, for comparison purpose, we also plot the interference induced by the

generalized Barker code and by the Zadoff code (I12 and I13 respectively). We

notice that, as δnorm increases, the interference level increases. It is noticeable

that the interference induced by the WDNE code is lower than I12 and I13 for

a large interval (i.e. for δnorm ≤ 0.8). In Figure 1.6b-1.6c, we consider the

interferences induced on the generalized Barker code c2 and on the Zadoff

code c3 respectively. Analogous considerations can be done in these two cases.

In the second scenario, described in Figure 1.6d, we consider an operating

environment with only one pre-existing sensor. This allows us to analyze the

effect of a particular code on the algorithm. We selected four possible inter-
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fering codes, all of them with energy N = 4: three phase codes (Barker, gen-

eralized Barker, and Zadoff codes), and an amplitude-phase modulated code

(Huffman code). The Huffman code [26] has been obtained using the proce-

dure described in [18]. In Figure 1.6d, we plot I10 versus δnorm for normalized

Doppler frequency fd = 0.15, network size L = 2, and different interfering codes

c1. We observe that our code, for high value of δnorm, induces almost the same

level of interference over all the proposed codes: there is less than 1 dB among

all the considered I10 , for δnorm ≥ 0.8.

Finally, in the third scenario, we consider a network with L − 1 = 3 pre-

existing radar sensors, all of them with a code of length and energy N = 4.

Moreover, the first code (c1) is a Barker code, while the other two codes (c2

and c3) belong to a certain class: phase codes, Gold codes, orthogonal PN

codes, or WDNE codes. When the sensors use phase codes, we set c2 and

c3 as generalized Barker and Zadoff codes, respectively. In the case of Gold

codes [27], they are simulated according to the procedure in [18], while the

PN sequences [28] are simulated so that they are orthogonal. Finally, in the

last case, we have an initial Barker code c1, a WDNE code c2 devised assuming

L = 2 and δnorm = δ0, and a WDNE code c3, with L = 3 and δnorm = δ0 (see Figure
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1.7 for a pictorial description of the different scenarios).

In Figure 1.8, we plot the normalized overall induced interference on the

radar sensor which uses the Barker code c1, i.e. I1TOT , defined as

I1TOT =
I10 + I12 + I13

L− 1
,

versus δnorm, for normalized Doppler frequencies fd = 0.15, and different classes

of codes. The last class WDNE is also parameterized on three different values

of δ0. First of all, we notice that Gold codes, achieve lower values of induced

interference than phase or PN codes. Moreover, WDNE codes can achieve the

same performance as Gold sequences for δ0 = 0.3, while the overall induced

interference can increase in correspondence of higher values of δ0, or decrease

for smaller δ0 values.

Summarizing, the joint analysis in the last two sub-sections has shown that

for a certain range of δnorm, our proposed algorithm can achieve both higher

values of SNR and lower values of induced interference than other considered

codes.
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Figure 1.6: (a,b,c) I lm versus δnorm for N = 4, L = 4, and normalized Doppler shift

fd = 0.15: a) I1m; b) I2m c) I3m; I l0 (solid curves); I l1 (dotted lines); I l2 (dashed lines); I l3
(dot-dashed lines); (d) I10 (c1) versus δnorm for N = 4, L = 2, normalized Doppler shift

fd = 0.15, and different codes c1: Barker code (dotted curve), generalized Barker code

(dashed curve), Zadoff code (dot-dashed curve), Huffman code (solid curve).
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Figure 1.7: Some scenarios where WDNE can be applied.
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Figure 1.8: I1TOT versus δnorm for N = 4, L = 4, normalized Doppler shift fd = 0.15,
and different classes of codes c2 and c3: phase codes (dashed curve), Gold code (dotted

curve), orthogonal PN codes (dot-dashed curve), WDNE codes (solid curves): for δ0 =
0.2 (o-marked), for δ0 = 0.3 (square-marked), and for δ0 = 0.5 (star-marked).
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Table 1.1: Average Nit and average TCPU required to solve problem (1.17).

δnorm N L Average Nit Average TCPU

0.2 4 5 8 0.46

0.5 4 5 9 0.51

0.8 4 5 10 0.56

0.2 13 5 13 0.71

0.5 13 5 14 0.80

0.8 13 5 15 0.83

1.5.3 Computational complexity

Among the five steps of the WDNE algorithm, the most burdensome in

terms of computational complexity, is the first step. In fact, the solution of

CP has a computational complexity O (N3.5) [29]. We recall that the complexity

is based on a worst-case analysis, and usually the interior point methods are

much faster [22]. In Table 1.1, we report the number of iterations Nit and

the CPU time TCPU in seconds required to solve CP using the toolbox SeDuMi

[25]. We have indicated also the corresponding value of δnorm used in the

simulation, the dimension N of the problem, and the number L of constraints.

The reported averaged values have been evaluated over 100 trials. Finally, the

computer used to obtain these results is equipped with a 3 GHz Intel XEON

processor.
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1.6 Conclusions

In this chapter, we have considered the problem of code design for a single

radar that operates in a noncooperative network. We try to maximize the SNR

of the radar, controlling, at the same time, the interference induced by our

sensor on the other sensors of the network, and forcing a constraint on the

transmitted energy by our radar. The resulting problem is in general NP-hard.

Using the well established relaxation and randomization theory [16], we have

presented a new waveform design procedure (referred to as WDNE), which in

polynomial time generates a suboptimal solution of the original problem. Nu-

merical simulations confirm that the WDNE technique can effectively increase

the detection performance of each sensor of the network controlling the in-

duced interference. Possible future research tracks might concern the exten-

sion of the WDNE: for instance, it might be interesting to add a constraint on

the resulting ambiguity function of the code [30], or on the achievable region

of Doppler estimation accuracy [31]. Moreover, it will be of interest to study

this procedure applied to a real scenario.
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1.7 Appendix: Solvability of CP

In this appendix, we prove that problem CP is solvable. To this end, we

show that CP and its dual DP are strictly feasible. Hence by Corollary 1.7.1 of

[29], we can conclude that CP and DP are solvable and the optimal values are

equal to each other.

CP is evidently strictly feasible (for instance I/(1 + maxl=0,...,L−1 Tr(Rδl)) is a

strictly feasible solution). As to the dual problem DP of CP, i.e.

DP






minimize
y0,...,yL−1

y0 + . . .+ yL−1

subject to y0Rδ0 + . . .+ yL−1RδL−1
� R

yl ≥ 0 , l = 0, . . . , L− 1

it also admits a strict feasible solution y⋆ = (y⋆0, . . . , y
⋆
L−1). This is evident,

observing that Rδ0 ≻ 0. In fact, due to the positive definiteness of Rδ0, for any

(y⋆1, . . . , y
⋆
L−1) it is possible to choose y⋆0 sufficiently large such as y⋆ is a strictly
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feasible solution of DP, i.e.

y⋆0Rδ0 + . . .+ y⋆L−1RδL−1
−R ≻ 0 .
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Chapter 2

Pareto-Optimal Radar Waveform

Design

2.1 Introduction

More and more sophisticated algorithms for radar waveform design have

been recently developed, due to the considerable advances in high speed sig-

nal processing hardware and digital array technology, as well as the growing

interest for better and better radar performances [32, 33].

Some recent studies concerning waveform optimization in the presence of

colored disturbance can be found in [34]. Therein, some algorithms, exploiting

55
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the degrees of freedom provided by a possibly rank deficient clutter covariance

matrix, are developed. In [30], a signal design approach relying on the maxi-

mization of the SNR under a similarity constraint with a given waveform is

proposed and assessed. In [31], focusing on the class of linearly coded pulse

trains (both in amplitude and in phase), the authors introduce a code selection

algorithm which maximizes the detection performance but, at the same time,

is capable of controlling both the region of achievable values for the Doppler

estimation accuracy and the degree of similarity with a pre-fixed radar code.

Further algorithms are also available attempting to determine the radar wave-

forms optimizing Pd under structural constraints (for instance a phase-only

modulation) [24, 35] or possibly for airborne Space Time Adaptive Processing

(STAP) scenarios [36].

In this chapter, we still focus on constrained code optimization, in the pre-

sence of colored Gaussian disturbance, assuming the same signal model as

in [31]. At the design stage, we propose a waveform design algorithm based

on the following criterion: joint optimization of the detection performance and

of the region of achievable values for the Doppler estimation accuracy, un-

der a constraint on the transmitted energy and on the degree of similarity
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with a pre-fixed radar code. This is tantamount to jointly maximizing two

quadratic forms, so that the resulting waveform design problem can be for-

mulated in terms of a non-convex multi-objective optimization problem. In

order to solve it, we resort to the technique of scalarization, where the original

vectorial problem is reduced to a scalar one through the use of the Pareto-

optimal theory. Thus, the proposed codes are chosen as Pareto-optimal points1

of the previously mentioned multi-objective optimization problem. This de-

sign technique represents the main novelty of the present work and, to the

authors best knowledge, this chapter represents the first application of the

Pareto-optimal theory to radar signal design.

At the analysis stage, we assess the performance of the new encoding al-

gorithm in terms of detection performance, region of achievable Doppler esti-

mation accuracy, and ambiguity function, highlighting the role of the Pareto

weight in the optimization. The results show that it is possible to trade-off

the aforementioned performance metrics. Precisely, detection capabilities can

be swaped for desirable properties of the waveform ambiguity function and/or

for an enlarged region of achievable Doppler estimation accuracies. Further-

1A Pareto-optimal solution is an optimal solution of a multi-objective optimization prob-
lem; it is defined as any solution that can’t be improved with respect to component without
worsening the others [22]

 
Distribution A:  Approved for public release; distribution is unlimited.



2.2 System Model and Problem Formulation 58

more, the trade-off is ruled by both the similarity constraint and the Pareto

weight. Indeed, this last parameter defines the relative importance of the two

objectives in the optimization problem. Otherwise stated, it represents the

cost required for improving a given objective (namely the CRLB) making worse

the other (namely the detection probability).

The chapter is organized as follows. In Section 2.2, we present the model

for both the transmitted and the received coded signals. In Section 2.3, we

formulate the code design problem, give some relevant guidelines to handle

multi-objective optimization problems through scalarization, and present the

algorithm which provides Pareto-optimal waveforms. In Section 2.4, we assess

the performance of the proposed encoding method also in comparison with a

standard radar code. Finally, in Section 2.5, we draw conclusions and outline

possible future research tracks.

2.2 System Model and Problem Formulation

We consider a radar which transmits a coherent burst of pulses, such as

in [31]:

s(t) = atu(t) exp[j(2πf0t+ φ)] ,
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where at is the transmit signal amplitude,

u(t) =

N−1∑

i=0

a(i)p(t− iTr) ,

is the signal’s complex envelope (see Figure 2.1), p(t) is the signature of the

transmitted pulse, Tr is the Pulse Repetition Time (PRT), [a(0), a(1), . . . , a(N −

1)] ∈ CN is the radar code, f0 is the carrier frequency, and φ is a random phase.

Moreover, the pulse waveform p(t) is of duration Tp ≤ Tr and has unit energy,

i.e.

∫ Tp

0

|p(t)|2dt = 1 .

The signal backscattered by a target with a two-way time delay τ and received

by the radar is

r(t) = αre
j2π(f0+fd)(t−τ)u(t− τ) + n(t) ,

where αr is the complex echo amplitude (accounting for the transmit ampli-

tude, phase, target reflectivity, and channels propagation effects), fd is the

target Doppler frequency, and n(t) is additive disturbance due to clutter and

thermal noise. This signal is down-converted to baseband and filtered through

a linear system with impulse response h(t) = p∗(−t).
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Let the filter output be

v(t) = αre
−j2πf0τ

N−1∑

i=0

a(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,

where χp(λ, f) is the pulse waveform ambiguity function [18], i.e.

χp(λ, f) =

∫ +∞

−∞
p(β)p∗(β − λ)ej2πfβdβ,

and w(t) is the down-converted and filtered disturbance component. The sig-

nal v(t) is sampled at tk = τ + kTr, k = 0, . . . , N − 1, providing the observables2

v(tk) =
α√
N
a(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,

where α =
√
Nαre

−j2πf0τ . Assuming that the pulse waveform time-bandwidth

product and the expected range of target Doppler frequencies are such that the

single pulse waveform is insensitive to target Doppler shift3, namely χp(0, fd) ∼
2We neglect range straddling losses and also assume that there are no target range ambi-

guities.
3Notice that this assumption might be restrictive for the cases of very fast moving targets

such as fighters and ballistic missiles.
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χp(0, 0) = 1, we can rewrite the samples v(tk) as

v(tk) =
α√
N
a(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .

Moreover, denoting by c = [a(0), a(1), . . . , a(N − 1)]T the N-dimensional column

vector containing the code elements, p = 1√
N
[1, ej2πνd, . . . , ej2π(N−1)νd ]T the tempo-

ral steering vector, νd = fdTr the normalized Doppler frequency, v = [v(t0), v(t1),

. . . , v(tN−1)]
T , and w = [w(t0), w(t1), . . . , w(tN−1)]

T , we get the following vectorial

model for the backscattered signal

v = αc⊙ p+w . (2.1)

2.2.1 Performance Measures

In this sub-section, we focus on the key performance measures which are

to be optimized or controlled during the selection of the radar code.

Detection Probability: it’s well known that the problem of detecting a target

in the presence of observables described by the model (2.1) can be formulated

in terms of the following binary hypotheses test
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



H0 : v = w

H1 : v = αc⊙ p+w

(2.2)

Assuming that the disturbance vector is a zero-mean complex circular Gaus-

sian vector with known positive definite covariance matrix

E[ww†] = M ,

(E[·] denotes statistical expectation and conjugate transpose), the generalized

likelihood ratio test (GLRT) detector for (2.2), which coincides with the op-

timum test (according to the Neyman-Pearson criterion) if the phase of α is

uniformly distributed in [0, 2π) [37, 19], is given by

|v†M−1(c⊙ p)|2
H1
>
<
H0

G , (2.3)

where G is the detection threshold set according to a desired value of the

false alarm Probability (Pfa). An analytical expression of the detection Proba-

bility (Pd), for a given value of Pfa, is available both for the cases of nonfluc-
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tuating and fluctuating target. In the former case (NFT)

Pd = Q
(√

2|α|2(c⊙ p)†M(c⊙ p),
√
−2 lnPfa

)
, (2.4)

while, for the case of Rayleigh fluctuating target (RFT) with E [|α|2] = σ2
a,

Pd = exp

(
Pfa

1 + σ2
a(c⊙ p)†M−1(c⊙ p)

)
, (2.5)

where Q(·, ·) denotes the Marcum Q function of order 1. This expression

shows that, given Pfa, Pd depends on the radar code, the disturbance cova-

riance matrix and the temporal steering vector only through the SNR, defined

as:

SNR =





|α|2(c⊙ p)†M(c⊙ p) NFT

σ2
a(c⊙ p)†M−1(c⊙ p) RFT

. (2.6)

Moreover, Pd is an increasing function of SNR and, as a consequence, the

maximization of Pd can be obtained optimizing the SNR over the radar code.
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Doppler Accuracy: the Doppler accuracy is bounded below by Cramer-Rao

Bound (CRB) and CRB-like techniques which provide lower bounds for the

variances of unbiased estimates. A reliable measurement of the Doppler fre-

quency is very important in radar signal processing because it is directly re-

lated to the target radial velocity useful to speed the track initiation, to improve

the track accuracy [38], and to classify the dangerousness of the target; hence

it’s clear that it has to be taken in account in the code design operation. It can

be shown that the CRB for known α is given by [31]:

∆CR(fd) =
ψ

∂h
†

∂fd
M−1 ∂h

∂fd

(2.7)

where h = c⊙ p and ψ = 1
2|α|2 . Notice that

∂h

∂fd
= Trc⊙ p⊙ u,

with u = [0, j2π, ..., j2π (N − 1)]T , so that (2.7) can be rewritten as

∆CR(fd) =
ψ

2T 2
r (c⊙ p⊙ u)†M−1 (c⊙ p⊙ u)

(2.8)
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Similarity Constraint: Designing a code which just optimizes the detection

performance does not provide any kind of control on the shape of the resul-

ting coded waveform. Precisely, it can lead to signals with significant modulus

variations, poor range resolution, high peak sidelobe levels, and more in gen-

eral with an undesired ambiguity function behavior. These drawbacks can

be partially circumvented imposing a further constraint to the sought radar

code. Precisely it is required that the solution to be similar to a known code

c0 (||c0||2 = 1), which shares constant modulus, reasonable range resolution

and peak sidelobe level. This is tantamount to imposing that [30]:

||c− c0||2 ≤ ǫ, (2.9)

where the parameter ǫ ≥ 0 rules the size of the similarity region. In other

words, (2.9) permits to indirectly control the ambiguity function of the con-

sidered coded pulse train: the smaller ǫ the higher the degree of similarity

between the ambiguity functions of the designed radar code and of the refe-

rence sequence.
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Figure 2.1: Coded pulse train u(t) for N = 5 and p(t) with rectangular shape.

2.3 Problem Formulation and Pareto-optimal Code

Design

The idea pursued in this section is to design a radar code which optimizes

jointly the detection performance and the CRLB on the Doppler estimation

accuracy, under a similarity constraint with a known radar code c0 and an

energy constraint. Specifically, exploiting the following relationships

(c⊙ p)†M(c⊙ p) = c†Rc (2.10)
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and

(c⊙ p⊙ u)†M−1 (c⊙ p⊙ u) = c†R1c, (2.11)

where R = M−1⊙
(
pp†)∗ and R1 = M−1⊙

(
pp†)∗⊙

(
uu†)∗ are positive semidefinite

[39, pag. 1352, A. 77], it appears that Pd is an increasing function of c†Rc,

while the CRLB is a decreasing function of c†R1c. As a consequence, the joint

optimization of the Pd and CRLB can be formulated in terms of a non-convex

multi-objective optimization problem [22, pp. 174-187]:





maxc (c†Rc , c†R1c)

s.t. ||c− c0||2 ≤ ǫ

||c|| = 1.

(2.12)

Before proceeding with the presentation of the algorithm which solves (2.12)

and provides radar codes, it is necessary to give a short introduction to the

theory of multi-objective optimization problems as well as the terminology,

and the concept of Pareto-optimal points.

 
Distribution A:  Approved for public release; distribution is unlimited.



2.3 Problem Formulation and Pareto-optimal Code Design 68

2.3.1 Multi-Objective Optimization Problems

A multi-objective optimization problem presents a vector-valued objective

function and can be written in the form






minx f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . , m,

hi(x) = 0, ∀i = 1, . . . , p

(2.13)

where x ∈ Rn is the optimization variable, fi(x), i = 1, . . . , m and hi(x), i =

1, . . . , p denote respectively the i-th inequality constraint and the i-th equa-

lity constraint function, 00(x) : x ∈ Rn → Rq is the vector-valued objective

function whose q components F1(x), . . . , Fq(x) can be interpreted as q different

scalar objectives, each of which we would like to minimize.

If x and y are both feasible, we say that x is at least as good as y according

the i-th objective if Fi(x) ≤ Fi(y), while x is better than y (or x beats y) accor-

ding the i-th objective if Fi(x) < Fi(y); so, if Fi(x) ≤ Fi(y) for i = 1, . . . , q and, for

al least one j, Fj(x) < Fj(y), we say that x dominates y.
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A point x⋆ is defined optimal only if it complies with

Fi(x
⋆) ≤ Fi(y), i = 1, . . . , q

for every feasible y; otherwise stated, x⋆ has to be simultaneously optimal for

each of the scalar problems





minx Fj(x)

s.t. fi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0, ∀i = 1, . . . , p

for j = 1, . . . , q. In the presence of an optimal point, the objectives are said

noncompeting, since no compromises have to be made among them: each ob-

jective is as small as it could be made, even if the others were ignored.

However, the set of achievable values for problem (2.13) does not always

present a minimum element, and thus the problem itself has not an opti-

mal point and an optimal value. In these cases, one focuses on the minimal

elements [22, pp. 45] of the set, namely on the so-called Pareto-optimal points.
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A feasible point x⋆ is referred to as Pareto-optimal only if 00(x
⋆) is a minimal

element of the set for achievable values of the problem; in this case, 00(x
⋆) is

a Pareto-optimal value for (2.13). Considering the q scalar components of

the objective function 00(x), x⋆ can be considered Pareto-optimal only if it is

feasible and no better feasible point exists. Precisely, if y is a feasible point

and Fi(y) ≤ Fi(x
⋆) for i = 1, . . . , q, then necessarily Fi(x

⋆) = Fi(y) for i = 1, . . . , q.

This also implies that: if a feasible point is not a Pareto-optimal, than there

is at least another feasible point that is better. Hence, the search for “good”

points can be limited to Pareto-optimal ones.

A standard technique to find Pareto-optimal points is the scalarization, where

the vectorial problem (2.13) is reduced to the scalar one






minx λT00(x)

s.t. fi(x) ≤ 0

hi(x) = 0

(2.14)

once it has been defined the vector of weights λ ≻ 0, namely a vector with

 
Distribution A:  Approved for public release; distribution is unlimited.



2.3 Problem Formulation and Pareto-optimal Code Design 71

positive components. In fact, it can be shown [22, pp. 178] that if x⋆ is an

optimal point for problem (2.14), than it’s also a Pareto-optimal point for the

problem (2.13). Nevertheless it is worth pointing out that, for non-convex

multi-objective optimization problems, it is possible through scalarization to

obtain a sub-set, but not all, the Pareto-optimal points.

The choice of the parameter λ plays a primary role in the determination of

the Pareto points, defining the weight given to each of the scalar components.

Specifically, it quantifies our desire to make Fi(x) small.

2.3.2 Pareto-optimal Code Design

In this sub-section, we design radar codes which are Pareto-optimal solu-

tions to (2.12), through the scalarization technique explained in the previous
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sub-section. Precisely, let us consider the scalarized problem





maxc c†
[

α1

λmax(R)
R+ α2

λmax(R1)
R1

]
c

s.t. ||c− c0||2 ≤ ǫ

||c|| = 1

(2.15)

where α1

λmax(R)
> 0 and α2

λmax(R1)
> 0 are the weights. A code c is an optimal

solution of (2.15) if and only if it is an optimal solution of





maxc c†Q(γ) c

s.t. ||c− c0||2 ≤ ǫ

||c|| = 1

(2.16)

where Q(γ) = R+γR1, γ = α2

α1

λmax(R)
λmax(R1)

> 0. This claim is evident since the objec-

tive functions of problem (2.15) and (2.16) are proportional and the constraint

sets are the same.

 
Distribution A:  Approved for public release; distribution is unlimited.



2.3 Problem Formulation and Pareto-optimal Code Design 73

Given γ, an optimal solution to the previous scalarized problem can be

found through the procedure proposed in [30]. Precisely, the Pareto-optimal

point corresponding to γ can be constructed according to Algorithm 2.

Algorithm 2 Determination of a solution to problem (2.16)

Input: c0, ǫ, R, R1, γ;

Output: an optimal solution ĉ of problem (2.16);

1: let Q(γ) , R+ γR1

2: let c̃ be the unit norm eigenvector corresponding to the greatest eigenvalue

of Q(γ);

3: define ĉ = c̃ej arg(c
†
0c̃) (where arg(x) defines the argument of x);

4: if ℜ(c†0ĉ) ≥ 1− ǫ/2 (where ℜ(x) defines the real part of x) then

5: copt(γ) ≡ ĉ;

6: else if ℜ(c†0ĉ) ≤ 1− ǫ/2 then

7: let λmin(Q(γ)) and λmax(Q(γ)) be, respectively, the smallest and the grea-

test eigenvalue of Q(γ);

8: define:

- ρ , 1
(1−ǫ/2)2 ;

- η1 , λmax(Q(γ));

- η2 ,
ρ1/2(λmax(Q(γ)))−λmin(Q(γ))

(ρ1/2−1)
;

9: consider the equation
c†

0(−Q(γ)+λ̄I)
−2
c0

[

c†
0(−Q(γ)+λ̄I)

−1
c0

]2 = ρ;

10: solve the equation above, via Newton’s method, respect to λ̄, with η1 <

λ̄ ≤ η2;

11: copt(γ) =
(
1− ǫ

2

) (−Q(γ)+λ̄I)
−1
c0

c†
0(−Q(γ)+λ̄I)

−1
c0

;

12: end

The parameter γ can be interpreted as the weight given to the second ob-
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jective (namely, the CRLB) with respect to the first one (namely, the Pd); other-

wise stated, it represents the cost required for improving a component making

worse the other.

A final remark concerns the applicability of the proposed framework in real

scenarios. Evidently, the objective functions require the specification of νd; as

a consequence, the solution depends on this pre-assigned value. It is thus

necessary to provide some guidelines to set νd in practical scenarios. To this

end, we highlight that:

• a single coded waveform designed for the challenging condition of slowly

moving targets (i.e. νd ≃ 0) can be devised;

• a single coded waveform optimized over an average scenario may be de-

signed. Specifically, the code might be chosen so as to maximize the ob-

jectives with R replaced by Ra = M−1 ⊙
(
E
[
pp†])∗, where the expectation

operator is over the normalized Doppler frequency. If this last quantity

is modeled as a uniformly distributed random variable, i.e. νd ∼ U (−ǫ, ǫ),

with 0 < ǫ < 1/2, the expectation can be readily evaluated, leading to

Ra = M−1 ⊙Σǫ , (2.17)
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where Σǫ(m,n) = sinc [2ǫ(m− n)], and sinc(x) = sin(πx)
πx

.

2.4 Performance Analysis

In this section, we assess the quality of the proposed waveform design tech-

nique. The analysis is conducted in terms of Pd, CRLB for Doppler estimation

accuracy, and ambiguity function of the pulse train modulated with the de-

signed code. Additionally, we provide the Pareto-optimal curve, i.e.





F1(copt(γ)) , c
†
opt(γ)Rcopt(γ)

F2(copt(γ)) , c
†
opt(γ)R1copt(γ)

(2.18)

(where, according to (2.4) and (2.8), F1 and F2 rule, respectively, Pd and CRLB);

namely the set of Pareto-optimal values, obtained through scalarization and

varying the relative weight γ, for the considered optimization problem. Finally,

we also explore the Pareto trade-off between Pd and CRLB arising through the

variation of γ.

The analysis is developed assuming a disturbance covariance matrix M

 
Distribution A:  Approved for public release; distribution is unlimited.



2.4 Performance Analysis 76

with the following structure:

M = Rclutter + 10−2I

where Rclutter = ρ|m−n|, with ρ = 0.9. Moreover, the Pfa of the receiver is fixed

to 10−6, νd = 0; a NFT is considered, and the reference code is the generalized

Barker sequence of length N = 7 [18, pp. 109-113] c0 = [0.3780, 0.3780,−0.1072−

j0.3624,−0.0202−j0.3774, 0.2752+j0.2591, 0.1855−j0.3293, 0.0057+j0.3779], properly

normalized in order to obtain a unitary norm vector.

In Figure 2.2, we plot the Pareto-optimal curve for several values of ǫ,

namely different degrees of similarity between the devised and the pre-fixed

code, assuming that γ ranges in the interval ]0, 10]. This curve is also referred

to as optimal trade-off curve, because it highlights the connection between

the two objectives, F1 and F2, emphasizing the role of the weight γ in the

determination of their Pareto-optimal values and the cost payed for increasing

one component with respect to the other. The shaded region indicates the

set of all the achievable values (F1, F2); for example, intercepting the curve

with the vertical line F1 = α (thus considering a certain value for Pd), we can

observe how small F2 (thus how large the corresponding CRLB) has to be in
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order to achieve F1 ≥ α. The same interpretation arises intercepting the curve

with an horizontal line F2 = β (thus considering a certain value for the CRLB),

which makes evident how small F1 (thus the corresponding Pd) has to be in

order to achieve F2 ≥ β. The slope of the optimal trade-off curve at a Pareto-

optimal value shows the local optimal trade-off between the two objectives;

steep slopes lead to large variations of F2 in correspondence of small changes

in F1 (this is actually what happens in the lower right region of the curves in

Figure 2.2).

Notice also how a reduction of ǫ (or, equivalently, an increase in the de-

gree of similarity) leads to worse and worse otpimal values for both F1 and F2,

namely to lower and lower Pareto-optimal curves. This result can be explained

observing that decreasing ǫ is tantamount to reducing the size of the feasible

set. However, the resulting loss (both in terms of detection capability and esti-

mation accuracy) is compensated for an improvement of the coded pulse train

ambiguity function, which appears more and more similar to that of the refe-

rence code. This is shown in Figures 2.3a-2.3d, where the ambiguity function

modulus is plotted, for γ = 1 and some values of the similarity parameter ǫ.

Comparing them with the ambiguity function of the code c0, plotted in Figure
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2.4, it can be easily recognized a greater and greater degree of similarity as ǫ

decreases.

The effects of the similarity parameter ǫ on the detection capability and the

Doppler estimation accuracy are analyzed in Figures 2.5a-2.5b. Therein,

we set γ = 0.05, and plot Pd (Figure 2.5a) or the normalized CRLB (CRLBn =

T 2
r CRLB, Figure 2.5b) versus |α|2 for several values of ǫ (ǫ = {0.1, 0.3, 0.7, 1.9998}).

In order to compare the performance of our code with that of the similarity se-

quence, we also evaluate Pd and CRLBn obtained through the use of c0. As

benchmark code, instead, we consider the sequence which maximizes the un-

constrained (namely without forcing the similarity constraint) Pd or CRLB ,

i.e.

c
Pd
benchmark = argmax

c
{c†Rc / ||c||2 = 1} (2.19)

cCRLBbenchmark = argmax
c

{c†R1c / ||c||2 = 1} (2.20)

The corresponding Pd and CRLB are referred to in the following as P benchmark
d

and CRLBbenchmark
n . Usually, they are are not obtained in correspondence of the

same code.

The curves in Figure 2.5a show that decreasing ǫ worse and worse Pd values
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are obtained. This behavior can be explained observing that reducing ǫ is tan-

tamount to reducing the size of the similarity region. Nevertheless, the quoted

Pd loss is compensated for an improvement in the coded pulse train ambi-

guity function, which is forced to be more similar to the reference sequence.

Different considerations apply to the curves of Figure 2.5b, representing the

CRLB behavior for the same values of ǫ as in Figure 2.5a. In this case, due

to the small value of the relative weight γ, the scalarization places almost all

the emphasis on the Pd objective, which substantially rules the choice of the

optimum code for the scalarized problem. As a consequence, enlarging the

similarity region, we can find a new code improving Pd, but such a code can

also lead to a degradation of the CRLB because the two objectives are compet-

ing.

Let us now analyze the effects of the Pareto weight γ, on the performance of

the designed code, fixing the similarity constraint ǫ. To this end, in Figure

2.6, we plot the Pareto-optimal curve obtained for ǫ = 0.1561, highlighting six

different Pareto-optimal values (operating points in the following), related to

six different weights. In Figures 2.7a and 2.7b we study the impact of the

Pareto weight on the optimization of the detection capability and Doppler es-
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timation accuracy. Specifically, we plot Pd and CRLBn versus |α|2 for the six

operating points of Figure 6. The performance follows the same qualitative

behavior explained in Figure 2.2; namely, Pd and CRLB are both decreasing

functions of γ.

Finally, it is important to point out that, although tied up to the same simi-

larity value ǫ, the codes resulting from the optimization problem (2.16) are

clearly affected by the chosen value for the weight γ. As a consequence, the

corresponding pulse trains will exhibit different ambiguity functions as shown

in Figures 2.8a-2.8d.
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Figure 2.2: Pareto-optimal curves for γ ∈]0, 10], ǫ = 0.1 (top-left), ǫ = 0.3 (top-right),

ǫ = 0.7 (bottom-left) and ǫ = 1.9998 (bottom-right), with the polyphase Barker code

of length N = 7 as reference code. The set of achievable values under the curves is

shaded in gray.
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Figure 2.3: (a) Ambiguity function mod-

ulus of the designed code with N = 7,
Tr = 5Tp, ǫ = 1.9998 and γ = 1.

Figure 2.3: (b) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.3 and γ = 1.

Figure 2.3: (c) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.1561 and γ = 1.

Figure 2.3: (d) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.0506 and γ = 1.
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Figure 2.4: Ambiguity function modulus of the generalized Barker code c0 of length

N = 7 with Tr = 5Tp.
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Figure 2.5: (a) Pd versus |α|2 for non-fluctuating target, Pfa = 10−6, N = 7, γ = 0.05,
and: ǫ = 0.1 (solid-circle curve), ǫ = 0.3 (dashed curve), ǫ = 0.7 (dotted curve) and ǫ =
1.9998 (solid-down triangle curve). The curves related to c0 (solid curve) and cbenchmark
(dash-dotted curve) are highlighted directly on the figure; notice that the curve for

ǫ = 1.9998 overlaps with the benchmark one.

Figure 2.5: (b) CRLBn versus |α|2 for non-fluctuating target, Pfa = 10−6, N = 7,

γ = 0.05, and: ǫ = 0.1 (solid-circle curve), ǫ = 0.3 (dashed curve), ǫ = 0.7 (dotted curve)

and ǫ = 1.9998 (solid-down triangle curve). The curves related to c0 (solid curve) and

cbenchmark (dash-dotted) are highlighted directly on the figure.
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Figure 2.6: Pareto-optimal curve for ǫ = 0.1561 and γ ∈]0, 10]. Each marker represents

an operative point for a given γ; γ = 0.05 (circle), γ = 0.4 (up-triangle), γ = 1 (right-

triangle), γ = 3 (square), γ = 6.5 (diamond) and γ = 10 (star).
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Figure 2.7: (a) Pd versus |α|2 for non-fluctuating target, Pfa = 10−6, N = 7, ǫ = 0.1561
and γ = {0.05; 0.4; 1; 3; 6.5; 10}. Generalized Barker code (solid curve). Designed codes

(dashed curves). Benchmark code (dash-dotted curve

Figure 2.7: (b) CRLBn versus |α|2 for non-fluctuating target, Pfa = 10−6, N = 7, ǫ =

0.1561 and γ = {0.05; 0.4; 1; 3; 6.5; 10}. Generalized Barker code (solid curve). Designed

codes (dashed curves). Benchmark code (dash-dotted curve).
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Figure 2.8: (a) Ambiguity function mod-

ulus of the designed code with N = 7,
Tr = 5Tp, ǫ = 0.1561 and γ = 0.4.

Figure 2.8: (b) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.1561 and γ = 1.

Figure 2.8: (c) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.1561 and γ = 3.

Figure 2.8: (d) Ambiguity function mod-

ulus of the designed code with N = 7,

Tr = 5Tp, ǫ = 0.1561 and γ = 10.
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2.5 Conclusions

In this chapter, we have considered radar waveform design, in the pres-

ence of colored Gaussian disturbance, forcing an energy and a similarity

constraints. The considered design criterion has been the joint constrained

optimization of the detection performance and CRLB on Doppler estimation

accuracy. The problem has been formulated in terms of a non-convex multi-

objective optimization problem with two quadratic constraints. Hence, radar

codes been have constructed as Pareto-optimal points of the aforementioned

problem through the scalarization procedure.

At the analysis stage, we have evaluated the performance of the new algo-

rithm in terms of detection performance, CRLB for Doppler estimation accu-

racy, and ambiguity function. Additionally, the Pareto-optimal curve has been

studied showing the effects of the Pareto weight on the performance trade-off.

Finally, we have also analyzed the impact of the similarity constraint on the

performance, for a given value of the Pareto weight.

Possible future research tracks might concern the extension of the frame-

work to situations where it is necessary to optimize more than two objectives

(performance measures) and/or where it is necessary to force additional con-
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straints on the structure of the radar waveform.
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Chapter 3

Knowledge-Aided Transmit Signal
and Receive Filter Design in
Signal-Dependent Clutter

3.1 Introduction

Several papers, concerning radar waveform diversity and optimized re-

ceive filter design, have appeared in open radar literature during the last five

decades. Such interest can be justified by the stressing performance require-

ments in terms of range-Doppler resolution, target tracking, and capability of

clutter rejection with low sidelobes signals/filters, often imposed by defense

applications in areas such as airborne early warning and homeland security

[32, 33, 40]. Besides, new computing architectures, high speed and Off The

Shelf (OTS) processors, digital arbitrary waveform generators, and solid state

transmitters have paved the way for an increased capability, actually unthink-

90
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able some years ago, to perform very complex and effective signal processing

[41, Ch. 6, 11, 25]. As a consequence, new frontiers have been opened for

radar signal processing such as the recent success story of the knowledge-

aided paradigm (see [42], [43], and [44]). It suggests that a smart use of some

a-priori information about the operating environment, when processing the

received signal and designing the transmitted waveform, can lead to sensible

performance improvements in the detection, classification, and tracking pro-

cess. Following this processing philosophy, it is of primary importance the

design of advanced algorithms, that, using a-priori knowledge sources (as for

instance location of electromagnetic interferences, reflectivity characteristic

of the environment, and weather conditions) adapt the synthesized transmit

waveform and the receive filter to the operating environment.

Radar performance improvement through waveform optimization has been

an ongoing topic of research since 1965, when H. Van Trees, in [45, 46], ob-

served that a suitable transmitted waveform is more important than optimum

receiver design, remarking that ”the most effective way (within the limitations

of our model) to combat reverberation is through proper signal design”. Since

then, many efforts have been directed, among radar community, towards
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radar performance optimization through waveform diversity. Two research

lines have been developed.

The former is focused on the signal-independent interference and well mod-

els, but is not limited to, radar environments where the main contribution

to the disturbance is represented by system noise, and/or intentional inter-

ference (jammers), and/or unintentional emissions from telecommunication

apparatuses, and/or terrain scattering due to signals from other radar plat-

forms (hot clutter), [34]. The latter assumes signal-dependent disturbance,

produced by the reflections of the signal, transmitted by the radar of interest,

from the terrain and objects of no tactical importance within the illuminated

area. Otherwise stated, this is a kind of self-induced radar interference, usu-

ally referred to as the reverberation phenomenon, due to the interaction of the

transmitted wave with the scattering environment.

In the context of signal-independent noise, waveform design in the presence

of colored disturbance with known covariance matrix has been addressed in

[30]. The authors consider a waveform optimization problem, in an active

sensing scenario, attempting to maximizing the Signal to Interference Plus

Noise Ratio (SINR) at the output of the matched filter, restricting the sought
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waveform to be similar to a desired signal. In [31], focusing on the class of lin-

early coded pulse trains (both in amplitude and in phase), the authors intro-

duce a code selection algorithm which maximizes the detection performance

but, at the same time, is capable of controlling both the region of achievable

values for the Doppler estimation accuracy and the degree of similarity with

a prescribed radar code. Further algorithms are also available attempting

to determine the radar waveforms optimizing the detection probability under

structural constraints [35] (for instance a phase-only modulation) [24] and

(peak to average power ratio constraints) [47].

As to the signal-dependent clutter scenario, many papers have addressed

along the years the problem of the joint transmitter-receiver design. In [48],

the author devises an algorithm to find the transmit signal and the receive fil-

ter maximizing the SINR, for a point-like moving target embedded in a clutter

environment produced by incoherent scatterers. Therein, an energy constraint

is forced on the transmitted waveform. In [49], assuming the environment

characterization of [48], dynamic range constraints on the transmitted wave-

form are added to the optimization problem. The resulting iterative algorithm,

converges to a solution signal satisfying the Kuhn-Tucker conditions, which
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are necessary for optimality, [50]. Implementation errors [49], amplitude and

phase modulation limitations [51], and quantization error effects [52], have

also been considered, modifying the procedure of [48]. In [53], considering a

stochastic Gaussian extended target and modeling the signal-dependent noise

as the output of a random Linear-Time-Invariant (LTI) filter (whose impulse

response is assumed a realization of a stationary Gaussian random process),

the transmitted waveform has been optimized forcing an energy constraint

and considering as figure of merit both the SINR and the Mutual Information.

In [54] and [55], the authors provide an analytical solution to the problem

of optimizing the transmitted signal power spectrum so as to maximizing the

detection performance of the optimal detector for a zero-Doppler Gaussian

point-like target in the presence of signal-dependent clutter, still modeled as

the output of a stochastic LTI filter with a stationary Gaussian impulse re-

sponse. Finally, in [56], the author generalizes his results in [54] and [55]

to a spatial-temporal processing resorting to the concept of the frequency-

wavenumber spectrum.

In this report, we still deal with the joint design of the transmit signal and

receive filter for a radar system, which operates in a high reverberant environ-
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ment. Specifically, considering as figure of merit the SINR (no assumptions

are made concerning the multivariate statistical characterization of the dis-

turbance), we optimize both the radar code and the receive filter assuming a

point-like moving target embedded in a clutter environment produced by in-

coherent scatterers. Other than an energy constraint, a similarity constraint

is enforced on the transmitted radar signal, in order to control some relevant

characteristics of the waveform, such as range-Doppler resolution, variations

in the signal modulus, and peak sidelobe level.

We suppose that the radar system has access to an environmental (possibly

dynamical) database including a geographical information system (and/or dig-

ital terrain maps) characterizing the scene to be illuminated, meteo data, and

some theoretical (or possibly empirical) a-priori electromagnetic reflectivity (σ0)

and spectral clutter models allowing the prediction of the actual scattering en-

vironment. Hence, we devise an optimization procedure for the transmit signal

and the receive filter which sequentially improves the SINR. Each iteration of

the algorithm, whose convergence is analytically proved, requires the solution

of both a convex and an hidden convex optimization problem. The resulting

computational complexity is linear with the number of iterations and poly-
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nomial with the receive filter length. The performance of the new algorithm

is analyzed in two scenarios: homogeneous terrain as well as mixed land and

sea clutter environment. The results show that significant SINR improvements

can be obtained jointly optimizing the transmitter and the receiver.

The chapter is organized as follows. In Section 3.2, we describe the model

for the transmitted signal, the received signal, and the signal-dependent clut-

ter. In Section 3.3, we formulate the constrained optimization problem for

the design of the radar code and the receive filter. Moreover, we propose a se-

quential optimization procedure, whose convergence properties are thoroughly

studied, to find a good solution for the considered problem. In Section 3.4, we

assess the performance of the proposed algorithm, and analyze the trade-off

between the achievable SINR and the shape of the waveform ambiguity func-

tion. Finally, in Section 3.5, we draw conclusions and outline some possible

future research tracks.
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3.1.1 Notation

We adopt the notation of using boldface for vectors a (lower case), and ma-

trices A (upper case). The transpose and the conjugate transpose operators

are denoted by the symbols (·)T and (·)† respectively. tr(·), rank(·), and λmin(·)

are respectively the trace, the rank, and the minimum eigenvalue of the square

matrix argument. I and 0 denote respectively the identity matrix and the ma-

trix with zero entries (their size is determined from the context). RN , CN , and

HN are respectively the sets of N-dimensional vectors of real numbers, the sets

of N-dimensional vectors of complex numbers, and N ×N Hermitian matrices.

The curled inequality symbol � (and its strict form ≻) is used to denote gen-

eralized matrix inequality: for any A ∈ HN , A � 0 means that A is a positive

semidefinite matrix (A ≻ 0 for positive definiteness). The Euclidean norm of

the vector x is denoted by ‖x‖. The letter j represents the imaginary unit (i.e.

j =
√
−1), while the letter i often serves as index in this chapter. For any com-

plex number x, we use ℜ(x) and ℑ(x) to denote respectively the real and the

imaginary part of x, |x| and arg(x) represent the modulus and the argument of

x, and x∗ is the conjugate of x. E [·] denotes the statistical expectation. Finally,

⊙ denotes the Hadamard product and for any optimization problem P, v(P)
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represents its optimal value.

3.2 System Model

We consider a monostatic radar system which transmits a coherent burst

of N pulses. Let us denote by s = [s(1), s(2), . . . , s(N)]T ∈ CN the radar code,

that we assume with unit norm. The waveform at the receiver end is down-

converted to baseband, undergoes a pulse matched filtering operation, and

then is sampled. The N-dimensional column vector v = [v(1), v(2), . . . , v(N)]T ∈

CN of the observations, from the range-azimuth cell under test, can be ex-

pressed as:

v = αTs⊙ p(νdT ) + c+ n, (3.1)

with αT a complex parameter accounting for channel propagation and backscat-

tering effects from the target within the range-azimuth bin of interest, p(νdT ) =

[1, ej2πνdT , . . . , ej2π(N−1)νdT ]T the temporal steering vector, νdT the normalized tar-

get Doppler frequency, c the N-dimensional column vector containing the fil-

tered clutter samples, and n the N-dimensional column vector of the filtered

noise samples.
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Figure 3.1: Range-azimuth bins of the illuminated area around the radar antenna

pattern.

The vector c is the superposition of the returns from different uncorrelated

scatterers, [57], each from the (r, i)−th range-azimuth bin1 as depicted in Fi-

gure 3.1.

1The model can be easily generalized to account for the presence of clutter produced by
multiple sources in the same range-azimuth bin. In this case, the clutter contribution from
each range-azimuth bin can be expressed through a subspace model representation, namely
Hθ, where H denotes the steering matrix and θ the vector of the backscattering complex
amplitudes from each clutter source. In the following, we will focus on the single clutter
source scenario even though the generalization to multiple sources is straightforward.
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Specifically, the clutter vector c can be written as:

c =

Nc−1∑

r=1

L−1∑

i=0

α(r,i)J r

(
s⊙ p(νd(r,i))

)
+

L−1∑

i=0

α(0,i)c⊙ p(νd(0,i)) (3.2)

where Nc ≤ N is the number of range rings that interfere with the range-

azimuth bin of interest (0, 0), L is the number of discrete azimuth sectors, α(r,i)

and νd(r,i) are, respectively, the echo and the normalized Doppler frequency of

the scatterer in the range-azimuth bin (r, i); furthermore, ∀r ∈ {1, . . . , N − 1}

J r(l, m) =





1 if l −m = r

0 if l −m 6= r

(l, m) ∈ {1, . . . , N}2

denotes the shift matrix, and J−r = JT
r . Notice that eq. (3.2), explicitly shows

the functional dependence of the disturbance component over the transmitted

signal s which modulates the temporal steering vector of each scatterer in the

reverberant environment. Then, the return from an isolated point-like reflector

is scaled by the backscattering amplitude α(r,i) and time-shifted through the

operator J r so as to account for the specific range position. Finally, all the
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contributions add together in the summation of eq. (3.2).

As to the characterization of the noise vector n, we assume that it is a

zero-mean white noise, i.e.:

E [n] = 0, E
[
nn†] = σ2

nI.

Let us analyze the characterization of the clutter vector c. As previously stated,

we suppose that the scatterers are uncorrelated; moreover, for each scatterer,

we denote by σ2
(r,i) = E

[
|α(r,i)|2

]
, assume that the expected value of its complex

amplitude is zero2, i.e. E
[
α(r,i)

]
= 0, and that its normalized Doppler frequency

is uniformly distributed around a mean Doppler frequency ν̄d(r,i), i.e. νd(r,i) ∼

U
(
ν̄d(r,i) −

ǫ(r,i)
2
, ν̄d(r,i) +

ǫ(r,i)
2

)
. As a consequence, we have:

E [c] = 0,

and

Σc (s) = E
[
cc†
]
=

Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)J rΓ(s, (r, i))J

T
r +

L−1∑

i=0

σ2
(0,i)Γ(s, (0, i)), (3.3)

2This is a reasonable assumption since arg(α(r,i)) is accurately modeled as statistically in-

dependent of |α(r,i)| and uniformly distributed in the interval [− 1
2 ,

1
2 ], i.e. arg(α(r,i)) ∼ U

(
− 1

2 ,
1
2

)
.
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where Γ(s, (r, i)) = diag{s}Φ
ν̄d(r,i)
ǫ(r,i) diag{s}† with

Φν̄d
ǫ (l, m) =






1 if l = m

e(j2πν̄d(l−m)) sin[πǫ(l−m)]
[πǫ(l−m)]

if l 6= m

(l, m) ∈ {1, . . . , N}2. (3.4)

No assumption has been done about the multivariate statistical characteriza-

tion of c.

Some relevant cases, which can be described and modeled according to (6.2),

will be now presented. One of them assumes that, for any (r, i) range-azimuth

bin, the Radar Cross Section (RCS) σ
(r,i)
0 of the scatterer is predicted through

the interaction between a digital terrain map, such as the National Land Cover

Data (NLCD), and RCS clutter models, see [58], [59], and [41, Ch. 15, 16].

Precisely, through the NLCD interrogation, we can classify the environment

illuminated by the radar, and consequently we can label each (r, i) range-

azimuth bin as a specific reflectivity environment. In fact, the NLCD data,

[58], hierarchically distinguish the terrain in nine major classifications such

as urban areas, barren land, water and so on, and each major classification

is sub-grouped into 21 minor classifications such as high-intensity residen-
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tial urban areas, low-intensity residential urban areas and so on. Once each

range-azimuth bin has been classified, we can determine its mean RCS using

a clutter model specific for that type of environment.

Let us present some relevant RCS clutter models; if the (r, i)-th range-azimuth

bin is classified as a hilly ground covered with trees, the RCS can be evaluated

as, [60]:

σ
(r,i)
0 =

0.00032

λ
A(r,i) sinψ(r,i)

where λ is the radar operating wavelength, while A(r,i) and ψ(r,i) are respectively

the area and the grazing angle of the (r, i)-th bin. Moreover, if the (r, i)-th

range-azimuth bin is classified as sea, the RCS can be obtained from, [60]:

σ
(r,i)
0 =

100.6Kb sinψ(r,i)

2.51× 106λ
A(r,i)

where Kb is the constant on the Beaufort scale showing the sea-state, λ is the

radar operating wavelength, while A(r,i) and ψ(r,i) are respectively the area and

the grazing angle of the (r, i)-th bin.

More reliable sea clutter models could be alternatively used, as for instance

the Georgia Institute of Technology (GIT) model, which also involves meteo pa-
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rameters, [61, pp. 307-308]. Other information concerning reflectivity of some

terrain types such as farmland-rural, desert, heavy woods, jungle, urban, at

different frequency bands and grazing angles are available in [61, Ch. 7].

Whenever σ
(r,i)
0 has been estimated, as previously described, we can evaluate

σ2
(r,i) as:

σ2
(r,i) = σ

(r,i)
0 Kr|G (θi) |2, (3.5)

where Kr is a constant accounting for the channel propagation effects, such as

the free space two-way path loss and additional system losses (radar equation),

θi is the azimuth angle of the bin (r, i), and G (θ) is the one-way antenna gain

for the angle θ3.

Another interesting scenario, that can be modeled according to (6.2), en-

compasses the situation of a uniform scattering field corresponding to σ0 =

σ
(r,i)
0 , which is meaningful when no knowledge of the clutter reflectivity is avail-

able. In this case, we have:

σ2
(r,i) = σ0Kr|G (θi) |2, (3.6)

3We are considering, for notational simplicity, a two-dimensional scenario (the generaliza-
tion to the three-dimensional case is straightforward).
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where, again, Kr is a constant accounting for the channel propagation effects,

such as the free space two-way path loss and additional system losses (radar

equation), θi is the azimuth angle of the bin (r, i), and G (θ) is the one-way an-

tenna gain for the angle θ. In this setting, the basic parameters to characterize

the second order statistical properties of the overall disturbance vector c + n

are the uncertainty ǫ on the clutter Doppler extension, the radiation pattern

of the exploited antenna, and the Clutter to Noise Ratio (CNR), defined as:

CNR =
σ0
σ2
n

,

whose value can be accurately estimated starting from some secondary data

or clutter maps, [62].

To define the mean clutter Doppler frequency ν̄d(r,i) and the uncertainty ǫ(r,i) on

the clutter Doppler extension of the (r, i)-th range-azimuth bin, a meaningful

criterion is to set ν̄d(r,i) equal to the frequency peak of the Power Spectral Den-

sity (PSD) of the clutter random process (characterizing the (r, i)−th bin) and

to take ǫ(r,i) equal to the 90/95−percent power bandwidth, whose values can

be obtained through a-priori models for the clutter spectrum. Again, we can

make use of NLCD to classify each bin and, consequently, to determine an
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adequate model of its PSD. For instance, it has been shown in [63], [14] that

the exponential model for the PSD is one of the most accurate approximations

of the windblown ground-clutter spectral measurements. It is given by:

S(f) = σ0
g

[
d

1 + d
δ(f) +

1

1 + d

βλ

4
exp

(
−βλ

2
|f |
)]

where

1. δ(f) is the Dirac delta function;

2. d represents the Direct Current (DC) to Alternate Current (AC) ratio,

which can be estimated [63] as d = 489.8w−1.55f 1.21
0 , where w is the wind

speed in miles per hour (mi/h), and f0 is the radar carrier frequency;

3. λ is the radar operating wavelength, expressed in meters;

4. β is the shape parameter, a function of the wind condition [63] through

the relationship β−1 = 0.1048 (log10w + 0.4147).

Furthermore, in the case of sea clutter, it has been shown in [64] that the PSD

can be roughly approximated as:

S(f) = σ0
s 1

fe
√
π
exp

[
−(f − fG)

2

fe

]
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where

1. fG is the peak of the Gaussian function, accounting for the mean Doppler

frequency;

2. fe is the Doppler spectrum width.

Typical values of fG and fe are reported in the tables given in [64].

Summarizing, the average clutter statistical parameters can be obtained jointly

using geographical information, meteo measurements, and statistical (possi-

bly empirical) models for the clutter RCS and PSD.

3.3 Problem formulation and Design Issues

We deal with the design of a radar code and a receive filter in order to max-

imize the SINR under some constraints on the shape of the code. Specifically,

assuming that the vector of observations v is filtered through w, the SINR at

the output of the filter4 can be written as:

SINR =
|αT |2

∣∣w† (s⊙ p(νdT ))
∣∣2

w†Σc (s)w + σ2
n‖w‖2 (3.7)

4Obviously, we assume that w 6= 0

 
Distribution A:  Approved for public release; distribution is unlimited.



3.3 Problem formulation and Design Issues 108

where |αT |2
∣∣w†(s⊙ p(νdT ))

∣∣2 is the useful energy at the output of the filter,

σ2
n‖w‖2 and w†Σc (s)w represents respectively the noise and the clutter energy

at the output of the filter. Notice that the clutter energy w†Σc (s)w function-

ally depends both on the receive processing w and the transmitted waveform

through Σc (s) (namely it is a quartic polynomial in variables w and s). This

observation represents the main difference between a signal-dependent and

a signal-independent environment where the output clutter energy is only a

function of w, being a homogeneous quadratic form in the variable w.

An important remark is now necessary. For a standard radar processing,

exploiting a fixed transmitted waveform s̄ and a matched filter receiver s̄ ⊙

p(νdT ), the SINR becomes:

SINRMF =
|αT |2

s̄†
[
diag (p(νdT )

∗)Σc (s̄) diag (p(νdT )) + σ2
nI
]
s̄
. (3.8)

Moreover, since (6.3) can be upper-bounded by

SINRUB =
|αT |2

σ2
n + min

s,‖s‖=1
λmin (Σc (s))

, (3.9)
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the following order relation holds true

SINRUB ≥ max
w,s

SINR ≥ SINRMF . (3.10)

It defines the region of potential performance improvements (in terms of SINR)

which can be potentially achieved by an algorithm of joint transmitter/receiver

design with respect to the classic processing. Evidently, the size of the interval

[SINRUB,SINRMF ] depends on the specific environment (through the matrix

Σc (s)). If Σc (s) is proportional to the identity matrix then SINRUB = SINRMF ,

confirming the optimality of the matched filter in a white interference scenario.

To develop our SINR optimization algorithm, we introduce the following

technical Lemma providing an alternative expression of the SINR.

Lemma 3.3.1. An equivalent expression of the SINR is given by:

SINR =
|αT |2

∣∣sT (w∗ ⊙ p(νdT ))
∣∣2

sTΘc (w) s∗ + σ2
n‖w‖2 (3.11)

where:

Θc (w) =
Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)diag{J−rw

∗}Φ
ν̄d(r,i)
ǫ(r,i) diag{J−rw}+

L−1∑

i=0

σ2
(0,i)diag{w∗}Φ

ν̄d(0,i)
ǫ(0,i) diag{w}
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Proof. See Appendix 3.6.1.

As to the shape of the code, we assume that ‖s‖2 = 1, to account for the

finite energy transmitted by the radar. Moreover, a similarity constraint, [30],

is enforced

‖s− s0‖2 ≤ δ , (3.12)

where the parameter δ ≥ 0 rules the size of the similarity region and s0 ia a

prefixed code. There are several reasons that justify the use of a similarity

constraint in the design of a radar code. In fact, a code which optimizes the

SINR at the output of the receiving filter does not provide any kind of control

on the shape of the resulting coded waveform. Precisely, the unconstrained

optimization of SINR can lead to signals with significant modulus variations,

poor range resolution, high peak sidelobe levels, and more in general with

an undesired ambiguity function behavior. These drawbacks can be partially

circumvented imposing the similarity constraint (6.5) to the sought radar code.

By doing so, it is required the solution to be similar to a known code s0 (‖s0‖2 =

1), which shares some nice properties such as constant modulus, reasonable

range resolution, and peak sidelobe level. In other words, imposing (6.5),

it is possible to indirectly control the ambiguity function of the considered
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coded pulse train: the smaller δ the higher the degree of similarity between

the ambiguity functions of the designed radar code and s0.

Resorting to the previously mentioned guidelines and definitions, the joint

design of the radar code and the receive filter can be formulated as the follow-

ing constrained optimization problem:

P






max
s,w

|αT |2
∣∣w† (s⊙ p(νdT ))

∣∣2

w†Σc (s)w + σ2
n‖w‖2

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ,

. (3.13)

Problem P is a non-convex optimization problem (the objective function is a

non-convex function and ‖s‖2 = 1 defines a non-convex set), and the technique

that we adopt to find a good solution is based on a sequential optimization

procedure. The idea is to iteratively optimize the SINR. Specifically, starting

from a receive filter w(n−1), we search for an admissible radar code s(n) at step

n maximizing the SINR corresponding to the receive filter w(n−1). Whenever

s(n) is found, we search for the adaptive filter w(n) which maximizes the SINR

corresponding to the radar code s(n), and so on. Otherwise stated, w(n) is used

 
Distribution A:  Approved for public release; distribution is unlimited.



3.3 Problem formulation and Design Issues 112

as starting point at step n + 1. To trigger the procedure, the optimal receive

filter w(0), to an admissible code s(0), is considered. From an analytical point

of view, s(n) and w(n) are the optimal solutions of the optimization problems

Ps(n) and Pw(n), respectively defined as:

Ps(n)





max
s

|αT |2
∣∣w(n−1)† (s⊙ p(νdT ))

∣∣2

w(n−1)†Σc (s)w
(n−1) + σ2

n‖w(n−1)‖2

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ

, (3.14)

and

Pw(n)




 max
w

|αT |2
∣∣w† (s(n) ⊙ p(νdT )

) ∣∣2

w†Σc
(
s(n)
)
w + σ2

n|w|2
. (3.15)

The proposed procedure shares some interesting properties summarized in

the following

Proposition 3.3.2. Assume that problems Pw(n) and Ps(n) are solvable5. Let

{(
s(n),w(n)

)}
be a sequence of points obtained through the proposed sequential

optimization procedure; let SINR(n) be the SINR value corresponding to the point

5By “solvable”, we mean that the problem is feasible and bounded, and the optimal value
is attained, see [29, p. 13].
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(
s(n),w(n)

)
at the n−th iteration. Then:

• the sequence SINR(n) is a monotonic increasing sequence;

• the sequence SINR(n) converges to a finite value SINR⋆;

• starting from the sequence
{(

s(n),w(n)
)}

, it is possible to construct another

sequence
{(

s̃(n
′), w̃(n′)

)}
, that converges to a feasible point (s̃⋆, w̃⋆) of the

problem P, such that the SINR evaluated in (s̃⋆, w̃⋆) is equal to SINR⋆.

Proof. See Appendix 3.6.3.

Let us observe that, from a practical point of view, the proposed optimiza-

tion procedure requires a condition to stop the iterations. There are several

ways to impose it; for instance considering the maximum number of tolera-

ble iterations, or the difference between two consecutive values of the partial

optimized SINR (i.e. forcing an iteration gain constraint), or mixing them. A

pictorial representation of the joint optimization process of the radar code and

the receive filter, based on the available information about the clutter envi-

ronment, is given in Figure 3.2. Precisely, through the use of a site specific

(possible dynamic) environment database, which contains a geographical in-

formation system, digital terrain maps, clutter models (in terms of electromag-
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Figure 3.2: Block diagram of the proposed transmit-receive optimization procedure.

netic reflectivity and spectral density), and meteorological information, we get

a description of clutter characterization in terms of σ2
(r,i), ν̄d(r,i), and ǫ(r,i) for each

range-azimuth bin (r, i). Then, triggering the optimization procedure from an

initial code s(0), from which we obtain the adaptive filter w(0), we sequentially

optimize the SINR solving Ps(n) and Pw(n) and obtain, at the step n,
(
s(n),w(n)

)
.

The process continues until the exit condition is satisfied, returning the radar

code s⋆ and the receive filter w⋆.

Remark: The same optimization problem is obtained resorting to Informa-

tion Theoretic arguments, namely optimizing, under the same constraints as

in problem P (6.6), a lower bound to the Mutual Information (MI), see [65],

between the received observations v and the complex backscattering target
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amplitude αT . See Appendix 3.6.4 for the detailed discussion and analysis.

The next subsections will be devoted to the study of the optimization prob-

lems Pw(n) and Ps(n) required for implementing the sequential optimization

procedure.

3.3.1 Receive Filter Optimization: Solution of the Problem

Pw(n)

In this subsection, a relevant property of problem Pw(n) is analyzed. Pre-

cisely, we show that Pw(n) is solvable and find a closed form optimal solution

w(n), for any s(n).

Lemma 3.3.3. To find an optimal solution of Pw(n), it is sufficient to solve P1,

given by:

P1






min
w

w†Σc
(
s(n)
)
w + σ2

n‖w‖2

s.t. ℜ(w† (s(n) ⊙ p(νdT )
)
) = 1

. (3.16)

i.e. given an optimal solution w⋆ of P1, w
⋆ is also an optimal solution of Pw(n).

Proof. See Appendix 3.6.7.
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From Lemma 3.3.3 and [66], an optimal solution of Pw(n) is given by:

w(n) =

(
Σc
(
s(n)
)
+ σ2

nI
)−1

(
s(n) ⊙ p(νdT )

)† (
Σc
(
s(n)
)
+ σ2

nI
)−1 (

s(n) ⊙ p(νdT )
)
(
s(n) ⊙ p(νdT )

)
, (3.17)

from which it is evident the dependence of w(n) on s(n) and the steering vector

p(νdT ).

3.3.2 Radar Code optimization: Solution of the Problem

Ps(n)

In this subsection, the main properties of problem Ps(n) are analyzed. Specif-

ically, we prove that the problem is solvable and describe an algorithm that

finds an optimal solution of Ps(n). Firstly, using Lemma 6.3.1, Ps(n) is equiva-

lent to P2:

P2





max
s

∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

) ∣∣2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ.

(3.18)
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This is a fractional quadratic problem and to solve it we follow the guidelines

in [67]. Now, let us indicate with

S =
(
w(n−1) ⊙ p(νdT )

∗) (w(n−1) ⊙ p(νdT )
∗)†

and

M = Θc
(
w(n−1)

)∗
+ σ2

n‖w(n−1)‖2I.

The homogenized version of P2 is
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P ′
2






max
p, t
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s†t |t|2







≤ 0

tr







I 0

0 0







ss† st∗

s†t |t|2







= 1

tr







0 0

0 1







ss† st∗

s†t |t|2







= 1

s ∈ CN , t ∈ C.

(3.19)
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Problems P2 and P ′
2 are clearly equivalent. In fact, it is evident that v(P2) ≤

v(P ′
2); on the other hand, the objective function of P2 evaluated at s⋆/t⋆ is equal

to the optimal value of P ′
2, provided that (s⋆, t⋆) is an optimal solution for P ′

2.

The SemiDefinite Programming (SDP), see [29], relaxation of the problem P ′
2,

obtained dropping the rank-one constraint, is problem P3:

P3





max
W

tr(Q−1W )
tr(Q0W )

s.t. tr (Q1W ) ≤ 0

tr (Q2W ) = 1

tr (Q3W ) = 1

W � 0,

(3.20)

where W ∈ HN+1, and the matrix Qi’s, are defined as follows:

Q−1 =




S 0

0 0




, Q0 =




M 0

0 0




, (3.21)
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and

Q1 =




I −s0

−s
†
0 ‖s0‖2 − δ




, Q2 =




I 0

0 0




, Q3 =




0 0

0 1




. (3.22)

As shown in [67], the optimal solution s(n) of P2, or equivalently of P2′ , can be

found in two steps. The first step consists in the solution of problem P3, or

equivalently of the following SDP problem:

P4





max
X, u tr

(
Q−1X

)

s.t. tr (Q0X) = 1

tr (Q1X) ≤ 0

tr (Q2X) = u

tr (Q3X) = u

X � 0, u ≥ 0,

(3.23)

 
Distribution A:  Approved for public release; distribution is unlimited.



3.3 Problem formulation and Design Issues 121

where X ∈ HN+1 and u ∈ R. In fact, problems P3 and P4 are solvable and have

the equal optimal value; furthermore, if (X⋆, u⋆) solves P4, then X⋆/u⋆ solves

P3, and if X⋆ solves P3, then (X⋆/tr(Q0X
⋆), 1/tr(Q0X

⋆)) solves P4, see [67].

The second step consists in the construction of a rank-one optimal solution

x⋆(x⋆)† of P3, starting from X⋆ (the obtained optimal solution of P3), resorting

to a rank-one matrix decomposition theorem [68, Theorem 2.3], which is cited

as the following lemma.

Lemma 3.3.4. Let X be a non-zero N × N (N ≥ 3) complex Hermitian posi-

tive semidefinite matrix and Ai be Hermitian matrix, i = 1, 2, 3, 4, and suppose

that (tr (Y A1) , tr (Y A2) , tr (Y A3), tr (Y A4)) 6= (0, 0, 0, 0) for any non-zero complex

Hermitian positive semidefinite matrix Y of size N ×N . Then,

• if rank(X) ≥ 3, one can find, in polynomial time, a rank-one matrix xx†

such that x (synthetically denoted as x = D1(X,A1,A2,A3,A4) ) is in range(X),

and

x†Aix = tr (XAi) , i = 1, 2, 3, 4;

• if rank(X) = 2, for any z not in the range space of X, one can find a rank-

one matrix xx† such that x (synthetically denoted as x = D2(X,A1,A2,A3,A4)
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) is in the linear subspace spanned by {z} ∪ range(X), and

x†Aix = tr (XAi) , i = 1, 2, 3, 4.

Let us check the applicability of the lemma to both X⋆ and the matrix pa-

rameters of P3. Indeed, the condition N ≥ 3 is mild and practical (the number

of transmitted pulses is usually greater than or equal to 3). Now, in order to

verify

(tr (Y Q1) , tr (Y Q2) , tr (Y Q3) , tr (Y Q4)) 6= (0, 0, 0, 0), for any non-zero Y � 0,

it suffices to prove that there is (a1, a2, a3, a4) ∈ R4 such that

a1Q1 + a2Q2 + a3Q3 + a4Q4 ≻ 0,

where

Q4 =




S − v(P3)M 0

0 0




.
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But this is evident for the matrix parameters6 of P4. Since P3 is a relaxation of

the homogenized fractional QPQC P ′
2, writing x⋆ =




y⋆

t⋆




the optimal solution

of Ps(n) is s(n) =
y⋆

t⋆
.

Algorithm 3 summarizes the procedure leading to an optimal solution s(n) of

Ps(n).

3.3.3 Transmit-Receive System Design: Optimization Pro-

cedure

In this subsection, the proposed sequential optimization procedure for the

radar code and receive filter is summarized and schematized as Algorithm 4.

To trigger the recursion, an initial radar code s(0), from which we obtain the

optimal receive filter w(0), is required; a natural choice is obviously s(0) = s0.

As to the computational complexity, connected with the implementation of

Algorithm 4, it depends on the number of iterations N as well as on and the

complexity involved in each iteration. Precisely, the overall complexity is linear

with respect to N , while, in each iteration, it includes the computation of the

6In fact, taking a1 = a4 = 0 and a3 = a2 = 1, then a1Q1 + a2Q2 + a3Q3 + a4Q4 = I ≻ 0.
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Algorithm 3 : Algorithm for Radar Code Optimization

Input: M , S, Q1.

Output: An optimal solution s(n) of Ps(n).

1: solve SDP P4 finding an optimal solution (X⋆, u⋆) and the optimal value v⋆;

2: let X⋆ := X⋆/u⋆;

3: if Rank (X⋆) = 1 then

4: perform an eigen-decomposition X⋆ = x⋆(x⋆)†, where x⋆ =




y⋆

t⋆


; output

s(n)
⋆
:= y⋆/t⋆ and terminate.

5: else if Rank (X⋆) = 2 then

6: find x⋆ = D2


X⋆,




S − v⋆M 0

0 0


 ,




I −s0

−s
†
0 ‖s0‖2 − δ


 ,




I 0

0 0


 ,




0 0

0 1





;

7: else

8: find x⋆ = D1


X⋆,




S − v⋆M 0

0 0


 ,




I −s0

−s
†
0 ‖s0‖2 − δ


 ,




I 0

0 0


 ,




0 0

0 1





;

9: end

10: let x⋆ =




y⋆

t⋆


; output s(n) := y⋆/t⋆.
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Algorithm 4 : Algorithm for Transmit-Receive System Design

Input:
{
σ(r,i)

}
,
{
ν̄d(r,i) , ǫ(r,i)

}
, σ2

n, s0, νdT , Q1.

Output: A solution (s⋆,w⋆) of P.

1: set n = 0, s(n) = s0,

w(n) :=

(
Σc (s0) + σ2

nI
)−1

(s0 ⊙ p(νdT ))
† (Σc (s0) + σ2

nI
)−1

(s0 ⊙ p(νdT ))
(s0 ⊙ p(νdT )),

and SINR(n) = SINR;

2: do

3: n := n+ 1;

4: construct the matrices

S =
(
w(n−1) ⊙ p(νdT )

∗) (w(n−1) ⊙ p(νdT )
∗)† and M = Θc

(
w(n−1)

)∗
+

σ2
n‖w(n−1)‖2I;

5: solve problem Ps(n) finding an optimal radar code s(n), through the use

of Algorithm 3;

6: construct the matrix Σc
(
s(n)
)
;

7: solve problem Pw(n) finding an optimal receive filter

w(n) :=

(
Σc
(
s(n)
)
+ σ2

nI
)−1

(
s(n) ⊙ p(νdT )

)† (
Σc
(
s(n)
)
+ σ2

nI
)−1 (

s(n) ⊙ p(νdT )
)
(
s(n) ⊙ p(νdT )

)
,

and the optimal value of the SINR, for the pair
(
s(n),w(n)

)
;

8: let SINR(n) = SINR;

9: while |SINR(n) − SINR(n−1)| ≤ ζ

10: output s⋆ = s(n) and w⋆ = w(n).
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inverse of Σc
(
s(n)
)

and the complexity effort of Algorithm 3. The former is in

the order of O(N3) [69]. The latter corresponds to the complexity of solving the

SDP P4, which is of order O(N3.5 log(1/η)) (see [29, p. 250]), where η is a pre-

scribed accuracy, and the complexity of the specific rank-one decomposition

procedure which is O (N3) [68].

Some interesting comments are now in order:

• Evidently, Algorithm 4 requires the specification of the target doppler

νdT ; as a consequence, the radar code s⋆ and the receive filter w⋆ depend

on these pre-assigned value. It is thus necessary to provide some guide-

lines on the importance and the applicability of the proposed framework.

To this end, we highlight the following issues.

1 A radar code and a receive filter designed for a challenging condition

dictated by the clutter PSD shape (i.e. design target Doppler in cor-

respondence of the PSD peak) can be synthesized (worst case opti-

mization).

2 A joint radar code and a receive filter optimized to an average scenario

can be selected. Otherwise stated, the code might be chosen as the
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solution to the problem,

P1





max
s,w

|αT |2w†diag{s}Φν̄dT
ǫT diag{s}†w

w†Σc (s)w + σ2
n‖w‖2

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ,

. (3.24)

where we are assuming that7 νdT ∼ U
(
ν̄dT − ǫ(0,0)

2
, ν̄dT +

ǫ(0,0)
2

)
, and Φ

ν̄dT
ǫT

is defined as in (3.4). In this case, the problem P1
w

(n)
, becomes

P1
w

(n)



 max

w

|αT |2w†diag{s(n)}Φν̄dT
ǫT diag{s(n)}†w

w†Σc
(
s(n)
)
w + σ2

n|w|2
(3.25)

and its optimal solution w(n) is easily proved to be equal to the max-

imum eigenvector of the matrix

(
Σc
(
s(n)
)
w + σ2

nI
)− 1

2 diag{s(n)}Φν̄dT
ǫT diag{s(n)}†

(
Σc
(
s(n)
)
w + σ2

nI
)− 1

2 ,

i.e. to a generalized eigenvector of the matrices
(
Σc
(
s(n)
)
w + σ2

nI
)

7It can be straightforward generalized to other probability density functions for the normal-
ized target Doppler frequency.
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and

diag{s}ΦǫTdiag{s}†, corresponding to the maximum generalized eigen-

value. As to the solution of P1
s
(n)

, we can again use Algorithm 3,

replacing S with:

S1 = diag(w(n−1))Φ
ν̄dT
ǫT

∗
diag(w(n−1)∗).

3 Assume that, after an uncoded (or a possibly standard coded) trans-

mission a detection is declared in a given Doppler bin, using a high

value of the false alarm Probability (Pfa). Then, our joint optimization

procedure can be employed to shape the waveform and the receive

filter for the next transmission in order to confirm the detection in

the previously identified bin, possibly with a smaller value of the Pfa

(confirmation process).

• As described in the block diagram of Figure 3.2, the proposed technique

requires the knowledge of the clutter characterization. The knowledge-

aided approach, see [70], [71], well fits with this need. Additionally, for

an on-line implementation, a look ahead computing architecture has to
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be considered. In fact, to adapt the radar code and the receive filter to

the illuminated scene at the time instant t (in which we are interested to

analyze the range-azimuth bin (0, 0)), we need the environment charac-

terization at that instant, as shown by the input parameters of Algorithm

4. Given the memory access latency and the computation time of Algo-

rithm 4, it is necessary to know at the time instant t−∆t, where the radar

will be positioned and what it will be doing, ∆t time instants later, i.e. at

the time instant t. Assuming that ∆t is greater than the memory access

latency and the processing time, then the sounder system is physically

implementable [70, page 27].

3.4 Performance Analysis

In this section, the performance analysis of the proposed algorithm for the

joint optimization of the radar code and the receive filter is presented. We

consider an L-band radar whose operating frequency is f0 = 1.4 GHz, and that

exploits a broadside array with Na = 21 elements, that points in the range-

azimuth bin of interest (0, 0). Specifically, we consider a uniformly weighted

linear array with uniform spacing equal to d = λ
2
. Consequently, the radiation
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pattern is given by:

G(θ) =






1

Na

sin
(
Na

π

2
cos(θ)

)

sin
(π
2
cos(θ)

) if 0 ≤ θ ≤ π

Gback if π ≤ θ ≤ 2π

,

with Gback = 10−3 corresponding to the backlobes attenuation.

In the following subsections, we will focus on two main scenarios: the former

refers to a uniform range-azimuth clutter characterization, the latter considers

heterogenous clutter. In both cases, we assume that the number of range rings

that interfere with the range-azimuth bin of interest (0, 0) is Nc = 2 and that

the number of azimuth cells in each ring (see Figure 3.1) is L = 100. Moreover,

we consider a pulse train of length N = 20 and select, as similarity code s0,

a generalized Barker code. It is a polyphase sequence whose autocorrelation

function has minimal peak-to-sidelobe ratio excluding the outermost sidelobe.

The description of generalized Barker codes can be found in [72] and [73], also

for other values of N . The exit condition, see Figure 3.2, that we implement
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to stop the procedure, is given by:

|SINR(n) − SINR(n−1)| ≤ 10−3, (3.26)

namely when the increase in the objective function is lower than ζ = 10−3,

the algorithm stops. Finally, in the numerical simulations, we exploit the

MATLAB c© toolbox SeDuMi [25] for solving the SDP relaxation, and the MATLAB c©

toolbox of [74] for plotting the ambiguity functions of the coded pulse trains.

3.4.1 Uniform Clutter Environment

In this subsection, we assess the performance of Algorithm 4 for a uniform

clutter environment. Such a choice proves effective to model a situation in

which the reflectivity environment is physically uniform with respect to the

range-azimuth bin, as depicted in right bottom corner of Figure 3.3, as well

as a situation in which no a-priori information is available on the illuminated

scene. As to the parameters of the uniform clutter, we consider a σ0
σ2n
Kr =

CNRKr = 30 dB, a mean Doppler frequency ν̄d = −0.1, and Doppler uncertainty

ǫ
2
= 0.35 for each range-azimuth bin. Additionally, we suppose the presence of

a target with Signal to Noise Ratio (SNR) |αT |2
σ2n

= SNR = 10 dB and normalized
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Figure 3.3: SINR behavior for δ = [0.01, 0.1, 0.2, 0.5]. On the right bottom corner, the

uniform terrain environment, illuminated by the radar positioned in correspondence

of the red point, is illustrated. The range rings that contribute to the backscattering

(white rings) are Nc = 2.

Doppler frequency νdT = −0.4.

In Figure 3.3, the SINR behavior is plotted versus the number of iterations,

for different values of the similarity parameter δ. As expected, increasing δ,

the optimal value of the SINR improves (actually, performance gains up to 15

dB can be observed for δ = 0.5, even if this is just a potential value and in

real conditions smaller gains could be experienced due to some inaccuracies

in the a-priori information) since the feasible set of the optimization problem

becomes larger and larger. achieve convergence, increases as well.
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(a) Ambiguity Function modulus of the radar
code s0.
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(b) Ambiguity Function modulus of the radar
code s⋆ for δ = 0.01.

−60

−40

−20

0

20

40

60

0

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

 τ /T
p

 ν NT
r

 |χ
(τ

,ν
)|

 

(c) Ambiguity Function modulus of the radar
code s⋆ for δ = 0.2.
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(d) Ambiguity Function modulus of the radar
code s⋆ for δ = 0.5.

Figure 3.4: Ambiguity Function modulus of the radar code, assuming Tr = 3Tp.

.

In Figures 3.4, the ambiguity function8 of the optimal synthesized code s⋆ is

plotted for different sizes of the similarity region. Indeed, we have an opposite

behavior with respect to Figure 3.3. Precisely, increasing δ, the set of feasible

points becomes larger and larger and worse and worse ambiguity functions

can be obtained.

8We consider a coherent pulse train with ideal rectangular pulses of width Tp and pulse
repetition time Tr.
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Figure 3.5: Temporal behavior of s⋆ in terms of amplitude (right plots), and phase

(left plots).

Finally, let us consider the behavior of the radar codes in both the time

and frequency domains. In Figure 3.5, we study the temporal behavior of the

optimal code s⋆, in terms of the amplitude and phase of the coded train, for

different values of δ. The plots highlight that increasing δ, the code becomes

different and different from the initial Barker code s0 and this agrees perfectly

with the plots of Figures 3.4.

Furthermore, in Figures 3.6, we analyze the frequency behavior of the
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Figure 3.6: Cross-Ambiguity Function of the radar code and receive filter.

radar code and the receive filter, corresponding to δ = 0.5, for different values

of the iteration number (n = [1, 3, 10, 30]). Precisely, we plot the contour map of

the cross-ambiguity function,

g(n) (m, νd) =
∣∣∣w(n)†

(
Jm

(
s(n) ⊙ p (νd)

)) ∣∣∣
2

(3.27)
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where m is the delay-lag and νd is the Doppler frequency of the incoming signal.

As forced by the design procedure, the cross-ambiguity function is equal to

one at (m, νd) = (0,−0.4), which corresponds to the range-Doppler position of

the nominal target. Moreover, lower and lower values of g(n) (m, νd) can be

observed in the strip 0 ≤ m ≤ 2 −0, 35 ≤ m ≤ 0.35 as the iteration step n

grows up. Interestingly, this performance trend reflects the capability of the

proposed joint transmit-receive optimization procedure to sequentially refine

the shape of the cross-ambiguity function in order to get better and better

clutter suppression levels. In Figures 3.7, we analyze the frequency behavior

of SINR, for the synthesized radar code and receive filter in correspondence of

δ = 0.5 and different values of the iteration number (n = [0, 3, 10, 30]). Precisely,

we plot

SINR(n) =
|αT |2

∣∣w(n)†
(
s(n) ⊙ p(νd)

) ∣∣2

w(n)†Σc
(
s(n)
)
w(n) + σ2

n‖w‖2
(3.28)

versus νd, which is tantamount to studying a normalized Doppler-cut of the

cross-ambiguity function (i.e. for m = 0). These curves highlight that the

SINR shares a quite flat shape within an interval of size ∆νd = 0.008, around

the nominal Doppler frequency νdT = −0.4, namely, the proposed procedure
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Figure 3.7: SINR(n) versus the normalized Doppler νd, for n = [0, 3, 10, 30].

exhibits an intrinsic Doppler tolerance.

3.4.2 Heterogenous Clutter Environment

In this subsection, we assess the performance of Algorithm 4 for an het-

erogenous clutter environment. We refer to the situation depicted in the bot-

tom corner of Figure 3.8, namely a mixed clutter environment composed by

ground and sea. As previously explained, the radar can acquire the geographic

a-priori information through a query to the NLCD database. Let us now de-

scribe the statistical characterization of the ground and sea environments. As
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to the ground range-azimuth bins, we consider a
σg0
σ2n
Kr = CNRgKr = 30 dB, a

mean Doppler frequency ν̄dg = 0, and Doppler uncertainty
ǫg
2
= 0.30. Moreover,

for the sea range-azimuth bins, we assume a
σs0
σ2n
Kr = CNRsKr = 25 dB, a mean

Doppler frequency ν̄ds = −0.1, and a relative Doppler uncertainty ǫs
2
= 0.25. Fi-

nally, we suppose that in each range ring the sea extends within the azimuth

angular sector π
4
≤ θ ≤ π

2
+ π

4
, and that the reference target, with |αT |2

σ2n
= SNR = 10

dB and normalized Doppler frequency νdT = −0.4, is located in θ = 0.

In Figure 3.8, the SINR behavior is plotted versus the number of itera-

tions, for different values of the similarity parameter δ. In agreement with the

uniform case, increasing δ, the optimal value of the SINR improves, since the

feasible set of the optimization problem becomes larger and larger. Addition-

ally, the number of iterations, required to achieve convergence, increases as

well.

In Figures 3.9, the ambiguity function of the optimal synthesized code s⋆ is

plotted, for different sizes of the similarity region. Again, we have an opposite

behavior with respect to Figure 3.8. Precisely, increasing δ, the set of feasible

points becomes larger and larger and worse and worse ambiguity functions

can be obtained, still in accordance with the unform clutter environment.
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Figure 3.8: SINR behavior for δ = [0.01, 0.1, 0.2, 0.5]. On the right bottom corner, the

heterogenous terrain environment (ground, dark gray, and sea, light gray), illumi-

nated by the radar positioned in correspondence of the red point, is illustrated. The

range rings that contribute to the backscattering (white rings) are Nc = 2, and that

the target is positioned on the blue point.
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(a) Ambiguity Function modulus of the radar
code s0, assuming Tr = 3Tp.
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(b) Ambiguity Function modulus of the radar
code s⋆ for δ=0.01.
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(c) Ambiguity Function modulus of the radar
code s⋆ for δ=0.2.
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(d) Ambiguity Function modulus of the radar
code s⋆ for δ=0.5.

Figure 3.9: Ambiguity Function modulus of the radar code, assuming Tr = 3Tp.
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Figure 3.10: Temporal behavior of s⋆ in terms of amplitude (right plots), and phase

(left plots).

Now, let us analyze the behavior of the radar codes in both the time and

frequency domains. In Figure 3.10, we study the temporal behavior of the

optimal code s⋆, in terms of the amplitude and phase of the coded train, for

different values of δ. Increasing δ, the code becomes increasingly different from

the initial Barker code s0. Additionally, we can observe that the heterogenous

setting leads to and optimal code exhibiting much more pronounced structural

differences, with respect to the similarity code, than the optimal code obtained

for the homogeneous scenario.

In Figures 3.11, we study the frequency behavior of the radar code and
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Figure 3.11: Cross-Ambiguity Function for the radar code and receive filter.

the receive filter, corresponding to δ = 0.5, for different values of the iteration

number. Precisely, we plot the contour map of the cross-ambiguity function,

defined in (6.22). The quoted maps indicate that lower and lower values of

g(n) (m, νd) can be observed in the strip 0 ≤ m ≤ 2 −0, 35 ≤ m ≤ 0.3 as the

iteration step n grows up. Moreover, in correspondence of the sea clutter

Doppler centroid νd = −0.1, the cross-ambiguity function has a notch, account-

 
Distribution A:  Approved for public release; distribution is unlimited.



3.4 Performance Analysis 143

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1
0.2
0.3
0.4
0.5
0.6

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0
1
2
3
4
5
6

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0
1
2
3
4
5
6
7
8S

IN
R

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0
1
2
3
4
5
6
7
8

ν
d

# 0

# 3

# 10

# 30

Figure 3.12: SINR(n) versus the normalized Doppler νd, for n = [0, 3, 10, 30].

ing for the high probability event that the clutter Doppler frequency assumes

a value very close to νd = −0.1. As explained with reference to the uniform sce-

nario, this performance behavior reflects the capability of the proposed joint

transmit-receive optimization procedure to sequentially improve the clutter

suppression.

Finally, in Figures 3.12, we analyze the frequency behavior of SINR versus

νd. Specifically, we plot SINR(n), defined in (3.28), for the synthesized radar

code and receive filter for δ = 0.5 and different values of the iteration number

(n = [0, 3, 10, 30]). The curves highlight that the SINR shares a quite flat shape
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within an interval of size ∆νd = 0.01, around the nominal Doppler frequency

νdT = −0.4. Otherwise stated, as for the homogeneous case, the proposed

procedure shares a quite good Doppler tolerance.

3.5 Conclusions

In this chapter, we have considered the problem of knowledge-aided trans-

mit signal and receive filter joint optimization in a signal-dependent clutter

environment. First of all, we have defined the signal-dependent clutter model

and have specified the a-priori information that the radar system needs to deal

with this problem. At the design stage, we have assumed the interaction be-

tween the radar and a geographic database to acquire the topology of the scene

to be illuminated. Then, based on the aforementioned geographic information,

meteorological data, and some electromagnetic reflectivity and spectral clutter

models, the radar can predict the scattering environment it is faced with.

Thus, we have devised and assessed an iterative algorithm for the joint

design of the transmitted waveform and the receive filter. It involves in each

iteration the solution of a convex and an hidden convex optimization problem.

The resulting computational complexity is linear with the number of iterations
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and polynomial with the receive filter length.

At the analysis stage, we have assessed the performance of the proposed al-

gorithm in terms of SINR versus the number of iterations, ambiguity function

of the resulting coded pulse train waveform, and cross-ambiguity function of

the transmit signal and receive filter pair. The results have highlighted that,

in the presence of a perfect a-priori knowledge, significant SINR gains (up to

15 dB) can be obtained jointly optimizing the transmitter and receiver.

Possible future research tracks might concern the analysis of the proposed

algorithm on real radar data as well as the extension of the procedure accord-

ing to a cognitive radar philosophy, see [70], [71], where each pulse of the

transmitted train enjoys the information provided by its predecessor through

a feedback network with the receiver. Finally, it might be of interest the gen-

eralization of the developed framework to an extended target scenario.
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3.6 Appendix

3.6.1 Proof of Lemma 6.3.1

Proof. Let us start by analyzing the numerator of:

SINR =
|αT |2

∣∣sT (w∗ ⊙ p(νdT ))
∣∣2

sTΘc (w) s∗ + σ2
n‖w‖2 . (3.29)

Using the property:

x⊙ y = diag{x}y

we have:

w† (s⊙ p(νdT )) = w† (diag{s}p(νdT ))

= sTdiag{w∗}p(νdT )

= sT (w∗ ⊙ p(νdT )) . (3.30)

Let us now consider the denominator of (3.29). Precisely, let us analyze

w†Σc (s)w. Using the property

x†J rdiag{y} = yTdiag{J−rx
∗}, (3.31)
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whose proof is given in Appendix 3.6.2, we have

w†Σc (s)w = w†

(
Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)J rΓ(s, (r, i))J

T
r +

L−1∑

i=0

σ2
(0,i)Γ(s, (0, i))

)
w

=
Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)w

†J rΓ(s, (r, i))J
T
rw +

L−1∑

i=0

σ2
(0,i)w

†Γ(s, (0, i))w

=

N−1∑

r=1

L−1∑

i=0

σ2
(r,i)w

†Jrdiag{s}Φ
ν̄d(r,i)
ǫ(r,i) diag{s}†JT

rw

+
L−1∑

i=0

σ2
(0,i)w

†diag{s}Φ
ν̄d(0,i)
ǫ(0,i) diag{s}†w

=

Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)s

Tdiag{J−rw
∗}Φ

ν̄d(r,i)
ǫ(r,i) diag{J−rw}s∗

+

L−1∑

i=1

σ2
(0,i)s

Tdiag{w∗}Φ
ν̄d(0,i)
ǫ(0,i) diag{w}s∗

= sTΘc (w) s∗ (3.32)

from which, resorting to (3.30) and (3.32), the statement follows.
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3.6.2 Proof of Equation (3.31)

Proof. Firstly, note that:

x†J r =
(
J †
rx
)†

= (J−rx)
† (3.33)

=




x(r + 1)∗, . . . , x(N)∗, 0Tr


 . (3.34)

Consequently,

x†J rdiag{y} =




x(r + 1)∗y(1), . . . , x(N)∗y(N − r), 0Tr




= yTdiag{J−rx
∗}, (3.35)
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where in (3.35) we used the fact that

J−rx
∗ =




x(r + 1)∗

...

x(N)∗

0r




.

Hence equation (3.31) is proved.

3.6.3 Proof of Proposition 6.3.2

Proof. We first prove that SINR(n) is a monotone increasing sequence, i.e.

SINR(n) ≤ SINR(n+1). In fact,

SINR(n) =
|αT |2

∣∣w(n)†
(
s(n) ⊙ p(νdT )

) ∣∣2

w(n)†Σc
(
s(n)
)
w(n) + σ2

n‖w(n)‖2
≤ v(Ps(n+1)), (3.36)
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v(Ps(n+1)) =
|αT |2

∣∣w(n)†
(
s(n+1) ⊙ p(νdT )

) ∣∣2

w(n)†Σc
(
s(n+1)

)
w(n) + σ2

n‖w(n)‖2
≤ v(Pw(n+1))

=
|αT |2

∣∣w(n+1)†
(
s(n+1) ⊙ p(νdT )

) ∣∣2

w(n+1)†Σc
(
s(n+1)

)
w(n+1) + σ2

n‖w(n+1)‖2
= SINR(n+1), (3.37)

from (3.36) and (3.37) we obtain

SINR(n) ≤ v(Ps(n+1)) ≤ v(Pw(n+1)) = SINR(n+1),

and the monotonicity follows.

As to the convergence of the sequence SINR(n), let us observe that for all feasi-

ble points (s,w):

|αT |2
∣∣w† (s⊙ p(νdT ))

∣∣2

w†Σc (s)w + σ2
n‖w‖2 =

|αT |2
∣∣ w

‖w‖
†
(s⊙ p(νdT ))

∣∣2

w

‖w‖
†
Σc (s)

w

‖w‖ + σ2
n

≤ |αT |2
w

‖w‖
†
Σc (s)

w

‖w‖ + σ2
n

(3.38)

≤ |αT |2
σ2
n

(3.39)

(3.40)
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where in (3.38) we used the Schwarz inequality and the fact that both w
‖w‖

and s have unit norm. Additionally, (3.39) stems from the fact that Σc (s) � 0.

Consequently,

0 ≤ SINR(n) ≤ |αT |2
σ2
n

.

Since SINR(n) is a bounded above and monotone increasing sequence, it follows

that SINR(n) converges to a finite value SINR⋆.

Finally, let us observe that given the sequence of points
{(

s(n),w(n)
)}

, we can

construct the sequence of feasible points
{(

s̃(n), w̃(n)
)}

of the problem P, where

s̃(n) = s(n) and w̃(n) = w(n)

‖w(n)‖ , satisfying the following conditions:

• S̃INR
(n)

= SINR(n) ∀n, where S̃INR
(n)

is the value of the SINR evaluated in

the point
(
s̃(n), w̃(n)

)
;

•
(
s̃(n), w̃(n)

)
∈ A ∀n, where A =

{
(s,w) : ‖s‖ = 1, ‖s− s0‖ ≤ δ, ‖w‖ = 1

}
, is a

compact set (closed and bounded set of C).

Hence, we can extract from
(
s̃(n), w̃(n)

)
a converging subsequence, [29, The-

orem A.4.2],
(
s̃(n

′), w̃(n′)
)
, whose limiting point (s̃⋆, w̃⋆) ∈ A, i.e. (s̃⋆, w̃⋆) is a

feasible point of the problem P. Moreover, being SINR a continuous function
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of (s,w), we have:

SINR∗ = lim
n→∞

S̃INR
(n)

= lim
n′→∞

S̃INR
(n′)

=
|αT |2

∣∣w̃⋆† (s̃⋆ ⊙ p(νdT ))
∣∣2

w̃⋆†Σc (s̃
⋆) w̃⋆ + σ2

n‖w̃⋆‖2
. (3.41)

Thus, the SINR evaluated in (s̃⋆, w̃⋆) is equal to SINR∗ and the proof is con-

cluded.

3.6.4 Mutual Information Analysis

An interesting figure of merit, that can also be considered for designing the

radar waveform, is the MI, see [65], between the received observations v and

the complex backscattering target amplitude αT , see [75]:

fMI(s) = I (αT ; v|H1, s) . (3.42)

We follow a robust design, optimizing a lower bound to the MI given in (3.42),

which depends only on the second order statistics of the independent random

quantities αT , c, and n. In fact, the MI (3.42) strongly depends on the prob-

ability density functions of αT , α(r,i), νd(r,i), and n, requiring too many a-priori

information that can not be reasonably available at the design stage. Precisely,
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it can be proved that, [76]:

Proposition 3.6.1. Assuming that αT , c, and n are circularly invariant complex

random vectors9, a lower bound to the MI (3.42) is:

fMI(s) ≥ log
(
1 + (s⊙ p(νdT ))

† [Σc (s) + I]−1 (s⊙ p(νdT ))
)
− D

(
αT , α

G
T

)
(3.43)

where αGT is a zero mean Gaussian random variable with the same variance of

the backscattering target amplitude αT , and D
(
αT , α

G
T

)
is the Kullback−Leibler

divergence, see [65, Ch.9], between the distributions of the random variables αT

and αGT .

Proof. See Appendix 3.6.5.

Consequently, considering the lower bound to the MI given in Proposition

3.6.1 as figure of merit, the design of the radar code can be formulated as the

9A complex random vector x is circularly invariant if the random vector exp (jφ)x, where
φ ∼ U

(
− 1

2 ,
1
2

)
is statistically independent of x, is statistically equivalent to x.
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following constrained optimization problem:

PMI






max
s

log
(
1 + (s⊙ p(νdT ))

† [Σc (s) + I]−1 (s⊙ p(νdT ))
)
− D

(
αT , α

G
T

)

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ,

.

(3.44)

Since the function log (x) + α is monotonically increasing in x, problem PMI

is equivalent to problem P ′
MI:

P ′
MI






max
s

(s⊙ p(νdT ))
† [Σc (s) + I]−1 (s⊙ p(νdT ))

s.t. ‖s‖2 = 1

‖s− s0‖2 ≤ δ,

. (3.45)

Finally, in order to solve problem P ′
MI, we prove the following Lemma:

Lemma 3.6.2. Problem P ′
MI , given in (3.45), is equivalent to problem P, pre-
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sented in (6.6), i.e. given an optimal solution s⋆MI of P ′
MI then

(
s⋆MI ,

(
Σc (s

⋆
MI) + σ2

nI
)−1

(s⋆MI ⊙ p(νdT ))
† (Σc (s

⋆
MI) + σ2

nI
)−1

(s⋆MI ⊙ p(νdT ))
(s⋆MI ⊙ p(νdT ))

)

is an optimal solution of P, and conversely, given an optimal solution (s⋆,w⋆) of

P, then s⋆ is an optimal solution of P ′
MI .

Proof. See Appendix 3.6.6.

Thus, we can use the optimization procedure of Algorithm 4 to optimize

the Mutual Information between the target backscattering and the received

signal v. Furthermore, the optimal transmitted signal s∗ in terms of SINR is

also the optimal transmitted signal according to the lower bound to the MI,

defined in Proposition 3.6.1.
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3.6.5 Proof of Proposition 3.6.1

Proof. In order to prove Proposition 3.6.1, let us define the equivalent received

vector:

y = [Σc (s) + I]−
1
2 v

= [Σc (s) + I]−
1
2 [(s⊙ p(νdT ))αT + c+ n]

= s̄αT + n′ (3.46)

where s̄ = [Σc (s) + I]−
1
2 (s⊙ p(νdT )) and n′ = [Σc (s) + I]−

1
2 (c+ n). Additionally,

n′ is a circularly symmetric white noise vector with unit variance statistically

independent of αT , because c and n are circularly symmetric random vectors

statistically independent of αT . Thus, the vectors v and y are related by an

invertible mapping and, from the data processing inequality, see [65, pp. 32-

33], we have that:

I (αT ; v|H1, s) = I (αT ;y|H1, s̄) (3.47)
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Let us, now, expand the MI in the right hand side of (3.47) in the following

way:

I (αT ;y|H1, s̄) = h (αT |H1, s̄)− h (αT |H1,y, s̄) , (3.48)

where h (x) and h (x|z) are, respectively, the differential entropy of the random

vector x, and the conditional differential entropy of the random vector x given

z, see [65, Ch. 9].

The conditional differential entropy h (αT |H1,y, s̄) can be upper bounded using

the following chain of inequalities:

h (αT |H1,y, s̄) = h (αT |H1,y, s̄, α̂T (y, s̄)) (3.49)

≤ h (αT |H1, s̄, α̂T (y, s̄)) (3.50)

≤ h (ǫαT
|H1, s̄) (3.51)

where α̂T (y, s̄) denotes an estimate of αT , based on y and s̄, while ǫαT
= αT −

α̂T (y, s̄) denotes the corresponding estimation error. Moreover, equality (3.49)

follows from:

I (αT ; α̂T (y, s̄)|H1,y, s̄) = 0
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since, conditioned on y, α̂T (y, s̄) is a deterministic quantity and then statisti-

cally independent of αT . Inequalities (3.50) and (3.51) are due to the fact that

conditioning reduces the entropy, [65, Ch. 9].

Letting α̂T (y, s̄) be the conditional Linear Minimum Mean Square Error

(LMMSE) estimator, we have:

α̂T =σ
2
T s̄

†(s̄σ2
T s̄

†+I
)−1

y

(3.52)

where we are assuming that both αT and y have zero mean, and we have

indicated with E [|αT |2] = σ2
T . After some simple algebraic manipulations, the

error variance of the estimator, in (3.52), can be expressed as:

σ2
T − σ2

T s̄
† (s̄σ2

T s̄
† + I

)−1
s̄σ2

T .

(3.53)

In order to get a lower bound to (3.48), we will provide an upper bound to the

conditional differential entropy of the error in (3.49). To this end, the entropy

maximizing property of the Gaussian distribution with the same variance is
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exploited, [65, Ch. 9]. Moreover, applying the inversion Lemma10 to the vari-

ance in (3.53), we obtain:

h (αT |H1,y, s̄) ≤ − log
(
1 + (s⊙ p(νdT ))

† [Σc (s) + I]−1 (s⊙ p(νdT ))
)
+ h

(
αGT
)
.(3.54)

Consequently, using (3.47), (3.48), and (3.54), we obtain

I (αT ; v|H1, s)≥ log
(
1 + (s⊙ p(νdT ))

† [Σc (s) + I]−1 (s⊙ p(νdT ))
)
− D(αT , α

G
T )

(3.55)

where we used D(αT , α
G
T ) = h

(
αGT
)
− h (αT ).

3.6.6 Proof of Proposition 3.6.2

Proof. Let s⋆MI be an optimal solution to P ′
MI; obviously, v(P ′

MI) ≤ v(P), since

(
s⋆MI ,

(
Σc (s

⋆
MI) + σ2

nI
)−1

(s⋆MI ⊙ p(νdT ))
† (Σc (s

⋆
MI) + σ2

nI
)−1

(s⋆MI ⊙ p(νdT ))
(s⋆MI ⊙ p(νdT ))

)

10We exploit in our derivation the fact that for any square matrix A = B − BC
†(CBC

† +
D)−1

CB, we may express its inverse as A
−1 = B

−1 + C
†
D

−1
C and the well known relation

|A|−1 = |A−1|.
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is a feasible point for P. Conversely, let (s⋆,w⋆) be an optimal solution of P.

This implies that

w⋆ =

(
Σc (s

⋆) + σ2
nI
)−1

(s⋆ ⊙ p(νdT ))
† (Σc (s

⋆) + σ2
nI
)−1

(s⋆ ⊙ p(νdT ))
(s⋆ ⊙ p(νdT )).

Consequently, the optimal value of the objective function of P is,

(s⋆ ⊙ p(νdT ))
† [Σc (s

⋆) + I]−1 (s⋆ ⊙ p(νdT ))

which can also be achieved by P ′
MI, choosing s⋆MI = s⋆. Then v(P ′

MI) ≥ v(P) and

the proof is completed.

3.6.7 Proof of Proposition 3.3.3

Proof. First of all, we prove that Pw(n) is equivalent to the problem P1′:

P1′





max
w

|αT |2
∣∣w† (s(n) ⊙ p(νdT )

) ∣∣2

w†Σc
(
s(n)
)
w + σ2

n‖w‖2

s.t. w† (s(n) ⊙ p(νdT )
)
= 1

. (3.56)
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In fact, v(Pw(n)) ≥ v(P1′), because we are adding a constraint. Moreover, let

w(n) be an optimal solution of problem Pw(n). Then, w′
1′ = w(n)∣∣w(n)†(s(n)⊙p(νdT ))

∣∣

exp(jarg(w(n)†
(
s(n) ⊙ p(νdT )

)
)) is an optimal solution of P1′ with v(Pw(n)) = v(P1′).

Obviously, P1′ is equivalent to P1′′ :

P1′′





min
w

w†Σc
(
s(n)
)
w + σ2

n‖w‖2

s.t. w† (s(n) ⊙ p(νdT )
)
= 1

. (3.57)

i.e. v(P1′) = 1
v(P1′′ )

and if w⋆
1′ is an optimal solution of P1′ then it is also an

optimal solution of P1′′ and vice versa.

Finally, P1′′ is equivalent to P1; in fact v(P1) ≤ v(P1′′), because we are adding a

constraint. Moreover, let w⋆
1 be an optimal solution of problem P1, then,

w′
1′′ =

w⋆
1∣∣w⋆†

1 (s(n) ⊙ p(νdT ))
∣∣ exp(jarg(w⋆†

1

(
s(n) ⊙ p(νdT )

)
))

is an optimal solution of P1′′ and v(P1′′) =
v(P1)∣∣w⋆†

1 (s(n)⊙p(νdT ))
∣∣2 . Since

∣∣w⋆†

1

(
s(n) ⊙ p(νdT )

) ∣∣ ≥

1, it follows that w′
1′′ = w⋆

1. From the above chain of equivalences, it follows

that an optimal solution w⋆
1 of P1 is an optimal solution of Pw(n).
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Chapter 4

Non-Cooperative Code Design in
Radar Networks: A
Game-Theoretic Approach

4.1 Introduction

In the last decade, the importance of radar has grown progressively with the

increasing dimension of the system: from a single colocated antenna to a large

sensor network [1]. The concept of heterogeneous radars working together

has been thoroughly studied, opening the door to the ideas of Multiple-Input-

Multiple-Output (MIMO) radar [2, 3], Over-The-Horizon (OTH) radar networks

[4], and Distributed Aperture Radar (DAR) [5, 6]. These three scenarios are

examples of cooperative radar networks, in the sense that every single ele-

ment contributes to the overall detection process. Unfortunately, in many

practical situations, it is not possible to design the network a-priori. As such,

162
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the elements are just simply added to the already existing network (plug and

fight), and each sensor exhibits its own detection scheme. This is the case

in non-cooperative radar networks [7, 8]; in this scenario, it is extremely im-

portant that each additional sensor interferes as little as possible with the

pre-existing elements, and, to this end, suitable techniques are to be adopted.

The usual approaches rely upon the employment of spatial and/or frequency

diversity: the former resorts to forming multiple orthogonal beams, while the

latter uses separated carrier frequencies to reduce interference [9, 10]. An-

other possibility is to exploit waveform diversity [32]; here, the basic concept

is to suitably modulate the waveform of the new sensor so as to optimize the

detection capabilities of the specific sensor, but, at the same time, controlling

the interference introduced into the network. Notice that this is different from

the approach employed in cooperative sensor network, where one must design

waveforms so as to optimize the joint performance of the system [11, 12].

With regard to the optimization of radar waveforms in a non-cooperative

scenario, we cite here the studies [13] and [78]. In paper [13], the design is

based upon the maximization of the global Signal-to-Interference-plus-Noise

Ratio (SINR), and classic constraints such as phase-only or finite energy are
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considered; in [78], instead, the problem of parameter estimation (e.g. di-

rection of arrival) for a non-cooperative radar is analyzed. In the present re-

port, we propose a different strategy, based upon a game-theoretic approach

[79]; we thus deal with the active radars as if they were players of a prop-

erly modeled game, whose set of possible strategies is made up of a certain

amount of pre-fixed transmit radar codes. We design utility functions, based

on the framework of potential games [80], in order to improve the SINR of

the active radars through a non-cooperative game. Thus, we present several

non-cooperative games for radar-code optimization in a non-cooperative envi-

ronment, considering different types of receive filters and accounting for the

case of non-negligible Doppler shifts too.

The chapter is organized as follows. In Section 4.2, we give some back-

ground material on game theory and on potential games, which will be needed

in the remaining part of the chapter. In Section 4.3, we present the consid-

ered radar network signal model and dwell on the proposed non-cooperative

games for radar code updating. Section 4.4 is devoted to the analysis of the

performance of the proposed games, while, finally, Section 4.5 contains the

conclusions.
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4.2 Brief preliminaries on game theory

Formally speaking, a game G in its normal form can be described as the

triplet G = [K, {Sk} , {uk}], wherein K = {1, 2, . . . , K} is the set of players par-

ticipating in the game, uk is the k-th player’s utility function (depending on

the players’ chosen strategies), and Sk is the set of possible actions (strategies)

that player k can take. We will be considering one-shot games wherein play-

ers, in a round-robin fashion, update their strategies based on the strategies

chosen by the other players, and aiming at their own utility function maxi-

mization. If, following such a strategy, an equilibrium is reached (or, in other

words, if such an iterative procedure converges to a stable set of chosen strate-

gies), then such an equilibrium is called Nash Equilibrium (NE), whose formal

definition is here given. Let

(s1, s2, . . . , sK) ∈ S1 × S2 × . . .SK

denote a certain strategy K-tuple for the active players. Letting, as custom-

ary in the game theory literature, s−k denote the (K − 1)-dimensional vector

whose entries are the strategies of all the players except the k-th, the point
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(s1, s2, . . . , sK) = (sk, s−k) is an NE if, for any player k, we have

uk(sk, s−k) ≥ uk(s
∗
k, s−k) ,

∀s∗k 6= sk . Otherwise stated, at an NE, no user can unilaterally improve its own

utility by taking a different strategy. A quick reading of this definition might

lead to think that at NE users’ utilities achieve their maximum values. Actu-

ally, this is not the case, since the existence of a NE point does not imply that

no other strategy K-tuple exists that can lead to an improvement of the util-

ities of some players while not decreasing the utilities of the remaining ones.

These latter strategies are usually said to be Pareto-optimal [79]. Otherwise

stated, at an NE, each player, provided that the other players’ strategies do

not change, is not interested in changing its own strategy. However, if some

sort of cooperation would be available, players might agree to simultaneously

switch to a different strategy K-tuple, so as to improve the utility of some, if

not all, players, while not decreasing the utility of the remaining ones. The gap

existing between the achieved utilities at the NE and those achieved in corre-

spondence of Pareto-optimal points is sometime colorfully named “the price of

anarchy.”
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The concept of best response dynamic is also worth being introduced. Given

a certain strategy profile (sk, s−k) for the active players, we say that a player

implements a best response dynamic if he chooses as its new strategy s̃k =

argmaxx uk(x, s−k). Given this definition, it descends that the set of chosen

strategies at a NE is the best response for every active player.

4.2.1 Potential games [80]

A potential game is a normal form game wherein any change in the utility

enjoyed by a given player in reaction to a unilateral (i.e., assuming that the

other players do not change their strategies) change of strategy by that player

is reflected by a similar change in a global function, that is usually referred to

as potential function. Formally speaking, letting S = S1×S2×· · ·×SK, a normal

form game is an exact potential game if there exists a function T : S → R,

known as the exact potential function, such that

uk(sk, s−k)− uk(s̃k, s−k) = T (sk, s−k)− T (s̃k, s−k) ,

for any k ∈ K, sk, s̃k ∈ Sk, and for any s−k ∈ S1 × · · · Sk−1 × Sk+1 × · · · SK. Given

a normal form game, a potential function subsumes the effects that any uni-
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lateral change of strategy may have on the utility enjoyed by that individual

player. A moment of thought also reveals that every NE of an exact potential

game must necessarily be a (possibly local) maximizer of the potential func-

tion, as well as that a best response dynamic in a potential game will converge

to a NE in every game with continuous utility functions and compact strategy

spaces. Finally, it is also worth underlining that, if the potential function does

represent a global performance measure for the considered system, potential

games are an instance wherein users can serve the greater good while playing

a non-cooperative game and acting selfishly.

In the following, we will be using game theory concepts to model competi-

tion among a set of radars (the players) that tune their own transmitted code

in order to maximize their SINR. Potential games will be used to come up with

procedures convergent to an NE.
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4.3 Problem Formulation and Code Updating Pro-

cedure

We consider a network of L non-cooperative monostatic radar systems,

where each sensor transmits a coded pulse composed of N sub-pulses. The

signal backscattered toward the l-th radar is filtered through a subpulse matched

filter and then converted to digital. The vector rl containing the received se-

quence rk,l, k = 1, . . . , N , assumed temporally aligned with the returns from the

range bin of interest, can be written as [81, 82]

rl = α0,lcl +
N−1∑

k=−N+1,k 6=0

αk,lJkcl+
L∑

h=1,h 6=l

N−1∑

k=−N+1

αk,hJkch + nl , (4.1)

where cl = [cl(1) . . . cl(N)]T denotes the unit-norm N-dimensional modulating

sequence of the l-th radar, αk,h are complex parameters accounting for the

radar cross section of the k-th range bin illuminated by the h-th radar (0 is

conventionally chosen as the range bin of interest), nl is the vector containing

the filtered thermal noise samples at the l-th radar (modeled as a zero-mean
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complex circular white vector), and the matrix

Jk = JT
−k =






Jk(j, i) = 1 i− j = k

Jk(j, i) = 0 otherwise

(4.2)

(k = 0, . . .N−1, (i, j) ∈ {1, . . . , N}2) is the N×N shift matrix. As to the modulating

sequence cl, we suppose that it belongs to a finite set Ωl which contains all the

possible sequences of length N that the l-th radar can transmit.

It is interesting to provide an interpretation of the contributions appearing

in the right hand side of (4.1). Indeed, the first term represents the signal

component from the range bin of interest for the l-th radar; the second con-

tribution accounts for the self-induced interference, while the third addend

represents the interference caused by the other radars of the network on the

l-th one.

Now, the vector rl is to be suitably processed in order to detect the possible

presence of a target in the range cell of interest. We thus consider the following

receiving structure: the vector rl undergoes a linear transformation (projection

over a suitable direction vector), and, then, its square modulus is compared
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with a threshold, i.e. we consider the detection rule

|d†
l (cl)rl|2

H1
>
<
H0

ηl (4.3)

with dl(cl) denoting an N-dimensional vector, function of the transmit code cl,

to be suitably designed (it could be a standard matched filter or a mismatched

filter [83, 84, 85] designed to optimize some performance metrics such as the

Integrated Sidelobe Level (ISL) or the Peak to Sidelobe Level (PSL) - see more

details in the sequel of the chapter), and ηl the detection threshold in the l-th

radar. Given the detection rule (4.3), we can define a SINR for the l-th radar

in the range cell of interest, γl say, as follows1

γl =
G(l, l)|d†

l (cl)cl|2

d
†
l (cl)dl(cl) +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)|d†
l (cl)Jkch|2 +G(l, l)

N−1∑

k=−N+1,k 6=0

|d†
l (cl)Jkcl|2

,

(4.4)

where the matrix G models the beam-pattern of the receive antenna.

The SINR γl is indeed a measure of the detection capabilities of the l-th

radar in the range cell of interest. Note that at the denominator we have the

1Actually, the SINR definition should include also the coefficients α·,·; however, no prior
knowledge of these coefficients may be reasonably assumed, and we are thus omitting them
in the SINR definition reported in (4.4).
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contributions from the backscattered signals transmitted from the other (in-

terfering) radars, weighted by the antenna pattern according to their direction

of arrival; it thus follows that a proper design of the receive pattern helps to

increase the detection capabilities.

4.3.1 Antenna beam pattern

The design of the receive antenna beam is of primary importance, especially

in the case in which multiple radars operate in the same area. This problem

is a classical one, and has been deeply analyzed in past years, especially with

reference to wireless communications [86], where adaptive antennas are used

in conjunction with power control and smart Multiple Access (MA) techniques.

Obviously, it also plays a primary role in radar applications, where all the

transmitting systems act as reciprocal sources of interference. Since we are

considering here a non-cooperative scenario, no MA or a-priori coordination

schemes can be applied. Likewise, since the ultimate goal of a radar is to

maximize its detection capability, resorting to power control is unrealistic. In

the radar scenario, the beam pattern of the antennas is used as a means to

improve the received SINR and to weaken interfering echoes. A good model for
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Figure 4.1: Antenna Beam Pattern. Main beam: θ ∈ [−θǫ,+θǫ]. Side beam: θ ∈
[−π,−θǫ] ∪ [+θǫ,+π]

the beam pattern G(θ) is the one illustrated in Figure 4.1, where θ = 0 is the

radar search direction2; for instance, such a shape can be obtained through

an N-element array [87]. Herein, we thus assume that the antenna gain may

take two possible constant values, one for θ ∈ [−θǫ,+θǫ], and one (much lower

than the former) outside the above interval: the side contributions are thus

all equally weighted by the side beams. The effect of the antenna pattern can

be therefore simply modeled as a proper L × L gain matrix G, whose (h, l)-

th element accounts for the effects of the h-th radar on the l-th system; the

2We are considering a bi-dimensional scenario where G(θ) is the azimuth beam pattern.
However, the extension to a three-dimensional situation accounting for both azimuth and
elevation is quite easy.
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coefficients for l 6= h are assumed to be a proper constant. The G(l, l) elements

on the principal diagonal represent the main beam gain, weighting the useful

signal for the l-th radar.

Given the outlined system model, our actual goal now is to design a non-

cooperative procedure for adapting the radar codes in order to maximize the

individual detection performances.

4.3.2 Matched filter

Given equation (4.4), we begin with assuming that dl = cl, i.e. a conven-

tional matched filter receiver is used, and consider minimization of the de-

nominator in (4.4), which is equivalent to optimizing γl since ||cl|| = 1. We thus

obtain the optimization problem

min
cl∈Ωl

{
c
†
l

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
cl

}
,

(4.5)

for l = 1, . . . , L. The solution for cl to problem (4.5) exists and can be found

through an exhaustive optimization over the finite set Ωl, with an acceptable

computational complexity because in practice the quoted set contains a quite
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small number of elements.

Unfortunately, when active radars update their own transmitted waveforms

according to such a strategy, no sufficient condition has been analytically

worked out for the existence of Nash equilibria, and, moreover, numerical

simulations have confirmed that when radars, in a round-robin fashion, up-

date their codes according to the strategy (4.5), an equilibrium is not always

reached. The considered game has thus no pure strategy equilibrium. One

possible way to circumvent such a problem is to properly modify the utility

function to be considered so that the resulting game may have an NE point.

In particular, if we choose to use the tool of potential games, the trick is to de-

fine a new utility function, strictly related to (4.4), but whose maximization by

the competing radars leads to an NE. To this end, let us consider the opposite

of the sum of the denominators of γl’s for the L active radars, i.e.:

T (c1, . . . , cL) = −
L∑

l=1

c
†
l

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
cl .

(4.6)
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Upon some straightforward algebraic manipulations, we have

T (c1, . . . , cL) =− c
†
j

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
cj

−
L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)c†jJ
T
k chc

†
hJkcj − T1(c1, . . . , cj−1, cj+1, . . . , cL) ,

(4.7)

where the function T1(c1, . . . , cj−1, cj+1, . . . , cL) does not depend on cj. In Eq.

(4.7), we have isolated the terms depending on the j-th radar code cj; it thus

readily follows that if we consider a game wherein the utility for the j-th sensor

is expressed as

uj =− c
†
j

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
cj

−
L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)c†jJ
T
k chc

†
hJkcj

,

(4.8)

we obtain an exact potential game with potential function T (·). Summing up,

we propose the radar code update procedure reported in Algorithm 5.

As already discussed, since at each iteration the potential function in (4.7)

gets increased, and since it is upper bounded, it necessarily follows that the

above iterative algorithm must reach a fixed point (NE). Notice however that
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Algorithm 5 : Radar update procedure - Matched filter

Input: Ωj, L;

Output: a NE solution for the potential game with utility (4.8);

1: assume that radar codes are arbitrarily chosen;

2: while the convergence is not reached do

3: for j = 1 to L do

4: update the j-th radar code according to

cj =arg max
x∈Ωj

−x†

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k+

G(j, j)
N−1∑

k=−N+1,k 6=0

Jkxx
†JT

k

)
x−

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)x†JT
k chc

†
hJkx

(4.9)

5: end for

6: end while

there is in general no guarantee that such a fixed point is the global maximizer

of the potential function, or just a local extremum.

4.3.3 Minimum ISL filter

The matched filter, considered in the previous section, is obviously the

classical receiving structure used in detection problems. However, it does not

allow to completely control the sidelobe energies, a feature that may be critical

in radar applications. Indeed, this limitation may strongly affect the range

resolution and the target detection capabilities of the radar system, especially
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in scenarios where multiple radars have to co-exist in the same area, thus

becoming themselves the main source of reciprocal interference.

Therefore, viable alternatives to the matched filter may be sought. From

this point of view, relevant metrics to be considered are the ones related to

the energies in the sidelobes, which, with reference to the l-th radar of (4.1),

can be modeled as
|d†

l(cl)Jkcl|2
|dl(cl)cl|2

, k = ±1, . . . ,±N − 1. Specifically, if one wants to

constraint the total energy underlying the sidelobes, it is possible to consider

the ISL

ISL =

∑N−1
k=N+1,k 6=0 |dl(cl)†Jkcl|2

|dl(cl)†cl|2
. (4.10)

Indeed, designing a filter with minimum ISL is tantamount to minimizing

the total energy in the range sidelobes - see, for instance, [88, 81]. In partic-

ular, with reference to the l-th radar of model (4.1), the optimal ISL filter may

be found as the solution to the following minimization problem:

min
x∈CN

x†Rlx

|x†cl|2
(4.11)

where

Rl ,

N−1∑

k=N+1,k 6=0

Jkclc
†
lJ

†
k .
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It is easy to verify that a solution to (4.11) also solves the following constrained

minimization problem

min
x∈CN

x†Rlx

s.t. ℜ(x†cl) = b,

(4.12)

in the sense that v(4.11) =
v(4.12)

b2
.

It is well known that problem (4.12) has a closed form solution x⋆(cl) =

b2e
√
−1ψQlcl, for any given phase ψ and constant b > 0, with Ql ,

R−1
l

c
†
lR

−1
l cl

(in-

deed, it is possible to prove that R is strictly positive definite and thus invert-

ible, provided cl(1) 6= 0 and cl(N) 6= 0 [89]); as a consequence, in order to solve

(4.11), it suffices to focus on (4.12) with b = 1 and ψ = 0.

In particular, due to the direct connection between the radar code cl and

the optimal ISL filter, as well as the energy constraint in (4.12), maximizing

the SINR reported in equation (4.1) is equivalent to the minimization of its

denominator, i.e. the quadratic form

min
cl∈Ωl

{
c
†
l

[
Q

†
l

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
Ql

]
cl

}
.

(4.13)
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A solution to problem (4.13) can be again computed through an exhaustive

search over the finite set Ωl; however, there is no guarantee that an equilib-

rium is reached as all the radars iteratively update their codes in a sequential

fashion. As for the previous section, we can resort to the potential games

framework to obtain an utility function for the players, such that the resulting

game admits an NE. We thus consider the following potential

T (c1, . . . , cL) =−
L∑

l=1

c
†
l

[
Q

†
l

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
Ql

]
cl ,

(4.14)

which can be rewritten as

T (c1, . . . , cL) =− c
†
j

[
Q

†
j

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
Qj

]
cj −

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)c†jQ
†
jJ

T
k chc

†
hJkQjcj

− T1(c1, . . . , cj−1, cj+1, . . . , cL) .

(4.15)

Therefore, in order to obtain an exact potential game with potential function
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T (·), we can consider the following expression for the utility of the j-th user:

uj =− c
†
j

[
Q

†
j

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
Qj

]
cj

−
L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)c†jQ
†
jJ

T
k chc

†
hJkQjcj .

(4.16)

We summarize the steps for the radar code update procedure in the Algorithm

6.

Algorithm 6 : Radar update procedure - Minimum ISL filter

Input: Rj, Ωj, L;

Output: a NE solution for the potential game with utility (4.16);

1: assume that radar codes are arbitrarily chosen;

2: while the convergence is not reached do

3: for j = 1 to L do

4: update the j-th radar code according to

cj =arg max
x∈Ωj

−x†

[
Q

†
j

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k+

G(j, j)
N−1∑

k=−N+1,k 6=0

Jkxx
†JT

k

)
Qj

]
x−

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)x†Q†
jJ

T
k chc

†
hJkQjx

(4.17)

5: end for

6: end while
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4.3.4 Minimum PSL filter

Besides the minimum ISL receive filter, another customary approach in

radar applications is to constrain the level of the sidelobe peaks; the metric to

be taken into account in this case is the PSL that, with reference to the l-th

radar, can be expressed as

PSL = max
k=±1,...,±N−1

|dl(cl)†Jkcl|2
|dl(cl)cl|2

. (4.18)

Note that designing a filter minimizing the PSL is equivalent to cutting all

the sidelobes in the filter response, and constraining the mainlobe peak to a

desired level.

The computation of the minimum PSL filter is slightly more involved than

the computation of the minimum ISL filter (which indeed was given in closed

form), since it requires the detection of the range lobes with the highest peak

level, and then their minimization; the problem can be thus formulated as the

following fractional quadratic optimization problem:

min
x∈CN

max
k=±1,...,±N−1

x†Rl,kx

|x†cl|2
, (4.19)
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where

Rl,k , Jkclc
†
lJ

†
k , k = ±1, . . . ,±N − 1.

Problem (4.19) can be restated into an equivalent form as

min
x∈CN

max
k=±1,...,±N−1

x†Rl,kx

s.t. ℜ(x†cl) = b,

(4.20)

where the equivalence follows from the observation that v((4.19)) =
v((4.20))

b2
,

for any b > 0: we can thus directly focus on (4.20), for b = 1. Solving problem

(4.20) requires the solution of a Linear Programming (LP) problem [85, 84] or

a Second Order Cone Programming (SOCP) [82]. Indeed, we can recast (4.20)

as

mint,x t

s.t. t ≥ x†Rl,kx, k = ±1, . . . ,±N − 1,

ℜ(x†cl) = 1,

(4.21)

which belongs to the class of the LP [85, 84] or SOCP [82] problems for the
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case of real or complex transmitted code sequence and optimization variable,

respectively.

Obviously, an optimal solution x⋆ for problem (4.21) is a function of the

radar code cl used by the player; therefore, the finite set Ωl of the possible radar

sequences and the set, say Σl, of the possible optimal PSL filters are related

by a one-to-one correspondence. Otherwise stated, specifying Ωl also leads

to specify Σl, in the sense that the set of the filters can be computed directly

off-line, and populated by the possible solutions for the problem (4.21).

Based on the above assumptions, the maximization of the SINR for the pair

(cl,d(cl)) relative to (4.21), leads to the following minimization

min
cl∈Ωl

{
d(cl)

†

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)J kchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
d(cl)

}
.

(4.22)

where, for each transmitted sequence cl ∈ Ωl, it is necessary to consider the

corresponding filter d(cl) ∈ Σl.

Again, for the purpose of correctly modeling the game among the L users,
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let us define the following potential:

T (c1, . . . , cL) =−
L∑

l=1

d(cl)
†

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkchc
†
hJ

T
k +G(l, l)

N−1∑

k=−N+1,k 6=0

Jkclc
†
lJ

T
k

)
d(cl) ,

(4.23)

where we assume that the correspondence between filters and transmitted

sequences has already been defined. Specifically, we may resort to a table I,

that can be looked upon during the update procedure. After some algebraic

transformations, we obtain

T (c1, . . . , cL) =− d(cj)
†

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
d(cj)−

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)d(cj)
†JT

k chc
†
hJkd(cj)

− T1(c1, . . . , cj−1, cj+1, . . . , cL) .

(4.24)

Given the above potential function, it is possible to define the utility for the
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j-th user as

uj =− d(cj)
†

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k +G(j, j)

N−1∑

k=−N+1,k 6=0

Jkcjc
†
jJ

T
k

)
d(cj)

−
L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)d(cj)
†JT

k chc
†
hJkd(cj),

(4.25)

whose iterative maximization by the active radars leads to a new potential

game admitting NE points. Algorithm 7 summarizes the radar code update

iterations for the case at hand.

Algorithm 7 : Radar update procedure - Minimum PSL filter

Input: Rj,k, Ωj, L;

Output: a NE solution for the potential game with utility functions (4.25);

1: solve the problem (4.21) for all cj ∈ Ωj, and compute the set Σj;

2: compute the table I so that I(i, j) , (ci,dj(ci)), where ci ∈ Ωl and dj ∈ Σj;

3: assume that radar codes are arbitrarily chosen;

4: while the convergence is not reached do

5: for j = 1 to L do

6: update the j-th radar code according to

cj =arg max
(x,y)∈I

−y†

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)Jkchc
†
hJ

T
k+

G(j, j)

N−1∑

k=−N+1,k 6=0

Jkxx
†JT

k

)
y −

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(j, h)y†JT
k chc

†
hJky.

(4.26)

7: end for

8: end while
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4.3.5 Non-negligible Doppler shift

So far, we have implicitly assumed that the received signal is affected by

either null or negligible Doppler shift. However, it is well-known that if the tar-

gets illuminated by the network of radars rapidly change their position with

unknown velocity and directions, then it is necessary to account for the effect

(no more negligible) of the Doppler frequency shifts. To this end, we follow the

same approach as in [82], extending it to the considered non-cooperative sce-

nario. Specifically, let us assume that ωl = [ω−N+1,l, . . . , ωN−1,l] is the Doppler

shifts vector (in radiant per second) for the l-th radar, with l = 1, . . . , L. More-

over, let

cl(ωk,l) =
[
cl(1)e

jωk,l . . . cl(N)ejNωk,l
]T

(4.27)

be the related Doppler shifted code sequence. The data model (4.1) can be

thus modified as follows:

rl = α0,lcl(ω0,l) +

N−1∑

k=−N+1,k 6=0

αk,lJkcl(ωk,l)+

L∑

h=1,h 6=l

N−1∑

k=−N+1

αk,hJkch(ωk,h) + nl , (4.28)

wherein ω0,l is the Doppler shift associated to the range bin of interest. Now,

should such a Doppler shift be known at the receiver, the following detection
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rule should be considered:

|d†
l (cl(ω0,l))rl|2

H1
>
<
H0

ηl , (4.29)

with dl(cl(ω0,l)) the N-dimensional detection vector, function of the (known)

Doppler shifted code cl(ω0,l). Given Eq. (4.29), the SINR equation (4.4) may be

easily reformulated as follows:

γl =
G(l, l)|d†

l (cl(ω0,l))cl(ω0,l)|2

d
†
l (cl(ω0,l))




I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkch(ωk,h)c
†
h(ωk,h)J

T
k +

+ G(l, l)

N−1∑

k=−N+1,k 6=0

Jkcl(ωk,l)c
†
l (ωk,l)J

T
k




dl(cl(ω0,l))

.

(4.30)

In practical radar applications, however, the target Doppler shift is usually

unknown, and the available knowledge is limited to the range [ω0, ω1] of vari-

ability of the Doppler frequencies. The customary approach thus relies on a

quantization of the said range with a preassigned resolution (∆ω) (a typical

value of (∆ω) is π/(10N) [82]) and, at the reception side, a bank of detec-

tion vectors, each one keyed to one of the quantized Doppler frequencies, is

considered, followed by a maximum selector. Otherwise stated, denoting by
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ω(1), ω(2), . . . , ω(P ) the P sample frequencies obtained by sampling with step

(∆ω) the interval [ω0, ω1], the detection rule is actually expressed as

max
i∈{1,2,...,P}

|d†
l (cl(ω(i)))rl|2

H1
>
<
H0

ηl . (4.31)

Now, in order to come up with a code update procedure, we should still

focus on the minimization of the denominator of Eq. (4.30); note however that

such a denominator depends on the Doppler shifts {ωk,l}, with l = 1, . . . , L and

k = −N + 1, . . . , N − 1. In order to circumvent this drawback, a suitable tech-

nique is to consider the statistical expectation of the denominator of (4.30),

averaged with respect to the set of Doppler shifts. Since in practice the de-

tection vectors are considered only for a finite number of Doppler frequencies,

in performing the average we model the detection vector as taking value in

the discrete set {d†
l (cl(ω(1))),d

†
l (cl(ω(2))), . . . ,d

†
l (cl(ω(P )))}, while the frequencies

inside the curly brackets in the denominator of Eq. (4.30) are assumed to be

continous and uniform random variates taking value in the set [ω0, ω1]. For

the case in which a matched filter is used at the receiver, the presence of

non-negligible Doppler shifts thus leads to consider, in place of Eq. (4.7), the
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following potential function:

T (c1, . . . , cL) = −
L∑

l=1

P∑

i=1

{
c
†
l (ω(i))

(
I +

L∑

h=1,h 6=l

N−1∑

k=−N+1

G(h, l)Jkch(ωk,h)c
†
h(ωk,h)J

T
k +

+ G(l, l)
N−1∑

k=−N+1,k 6=0

Jkcl(ωk,l)c
†
l (ωk,l)J

T
k

)
cl(ω(i))

}
,

(4.32)

wherein the overline (·) denotes statistical expectation with respect to the

Doppler shifts; note that, upon letting F l = cl(ωk,l)c
†
l (ωk,l), it is easily shown

that the (n,m)-th entry of F l, say F l(n,m), is expressed as

F l(n,m) =
cl(n)c

†
l (m)

ω1 − ω0

∫ ω1

ω0

ej(n−m)ωd ω =






|cl(n)|2, n = m,

cl(n)c
†
l (m)

[
ej(n−m)ω1 − ej(n−m)ω0

]

j(n−m)[ω1 − ω0]
, n 6= m.

(4.33)

Now, given the potential function (4.32) a non-cooperative game can be ob-

tained, similarly to the case of negligible Doppler shift, by isolating the terms

depending on a given code, say the j-th. The utility function for the j-th radar
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is thus written as

uj = −
P∑

i=1

{
c
†
j(ω(i))

(
I +

L∑

h=1,h 6=j

N−1∑

k=−N+1

G(h, j)JkF hJ
T
k +

+G(j, j)

N−1∑

k=−N+1,k 6=0

JkF j(cj)J
T
k

)
cj(ω(i))

}
−

L∑

l=1,l 6=j

P∑

i=1

{
c
†
l (ω(i))

(
N−1∑

k=−N+1

G(j, l)J kF j(cj)J
T
k

)
cl(ω(i))

}
.

(4.34)

In writing the above equation, we have made explicit the functional depen-

dence of the matrix F j on the code cj, which is to be properly accounted for in

the utility maximization. Summing up, for non-negligible Doppler shifts and

matched filter reception, each radar should update its code in order to max-

imize the utility in (4.34), and the detection rule to be considered should be

the one reported in Eq. (4.31).

Similar considerations can be done for the cases in which a minimum ISL

or PSL filters are used. For the sake of brevity, however, we avoid providing

more details on this, since it would not add conceptual value to our work.
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4.4 Performance Analysis

In this section, we assess the performance of the proposed non-cooperative

waveform design techniques; to this end, we test the outlined algorithms in

two distinct scenarios, where the difference is mainly in the amount of involved

radars, as well as their receive antenna pattern characterization. Precisely, we

consider the following two games Gi = {Li,Ωl, {ul}}, for i = {1, 2} where:

• L1 = {1, 2, 3, 4} is the set of 4 players (i.e. the set of 4 radars actually

transmitting), while L2 = {1, 2, 3, 4, 5, 6} is the set of 6 players (i.e. the set

of 6 radars actually transmitting);

• Ωl is a set of cardinality M = 653 which contains the sequences of length

N = 16 available to the l-th player. The same set is considered for each

radar, i.e. Ωl is actually independent of the index l (and indeed we will be

denoting it by Ω in the following). The full details on the sequences of the

set Ω are reported in the Appendix.

• {ul} represents the utility function for the l-th player, as defined in the

discussed Algorithms 5, 6 and 7, for l = 1, . . . , 4 or l = 1, . . . , 6 respectively

for the first and the second game;

 
Distribution A:  Approved for public release; distribution is unlimited.



4.4 Performance Analysis 193

• G is the Li × Li matrix describing the antenna gain pattern of the Li

players, for i = {1, 2}. We consider a general scenario wherein each radar

may have its own antenna beam pattern, but we normalize, without loss

of generality, to 0 dB the maximum gain of each antenna. Indeed, we

consider the following pattern models for the games G1 and G2:

GG1 =




0 −30 −19 −20

−20 0 −19 −20

−20 −30 0 −20

−20 −30 −19 0




, GG2 =




0 −30 −19 −20 −15 −23

−20 0 −19 −20 −15 −23

−20 −30 0 −20 −15 −23

−20 −30 −19 0 −15 −23

−20 −30 −19 −20 0 −23

−20 −30 −19 −20 −15 0




,

respectively3.

With reference to the simulation setup of Figures 4.2a, 4.3a, and 4.4a, we

choose four transmit sequences from Ω and consider them as the initial strate-

3Recall that in the above gain matrices the (m,n)-th element is a coefficient weighting the
interference from the m-th radar on the n-th receiver.
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gies for G1. Moreover, for the corresponding figures of G2 (Figures 4.2b, 4.3b,

and 4.4b), we add two more codes, still selected from Ω, to the four afore-

mentioned initial strategies. The analysis is conducted in terms of SINR γl

which each player is able to obtain through the non-cooperative code design,

focusing on the performance provided by the three algorithms. The average

SINR among the transmitting radars at the equilibrium, for all the players,

as their number increases, is also plotted. The results emphasize how, as

the number of interferers increases, the games actually are able to reduce the

consequential loss of performances with respect to the case in which no code

optimization procedure is performed.

In Figures 4.2a and 4.2b we plot the SINR of each player versus the num-

ber of iterations required by Algorithm 5 to converge to a NE, for the games G1

and G2, respectively; these plots show the impact of the chosen code (strategy)

on the SINR of the set of players, as they pick up different codes from the set

Ω. Note that the starting codes (strategies) do not provide satisfactory values

of γl for all the set of players; indeed, in both the games the majority of the

sensors experiment quite a low level of SINR, with the exception of the first

two players. The curves highlight that, as the players change their transmit-
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(a) SINR versus the number of iterations, for a set of L = 4 players, Algorithm 5.
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(b) SINR versus the number of iterations, for a set of L = 6 players, Algorithm 5.

Figure 4.2: SINR versus the number of iterations, Algorithm 5.
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ting codes according to Algorithm 5, the SINR of each player converges to a

fixed value: after a certain amount of iterations, the iterative algorithm thus

reaches a fixed code (strategy). In particular, both the sets of players share an

average increase in their respective performances, quantifiable in about 1.54

dB for the first game and 1.88 dB for the second game, and no particular loss

is observed due to the growth of the number of transmitting radar. Moreover,

convergence is reached after a few iterations.

In Figures 4.3a and 4.3b, the same analysis is conducted for Algorithm

6. Again, the starting strategy seems to be quite disadvantageous for both

the sets of active radars, and in particular for the second game (specifically,

we experience unpleasant performances in the cases of radars 3 and 4, with

reference to the 1-st game, and radars 3-6 for the second game). Resorting

to the coding procedure of Algorithm 6, however, all the radars increase the

respective performances; in particular, we observe an average increase, in the

provided SINR values, of 1.84 dB for game G1 and 2.06 dB for game G2.

The analysis also shows a gain in terms of ISL values, due to the game ap-

proach. Specifically, in Figure 4.4, we provide a comparison between the av-

erage ISL, with respect to the increasing number of active radars (for the case
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(a) SINR versus the number of iterations, for a set of L = 4 players, Algorithm 6.
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(b) SINR versus the number of iterations, for a set of L = 4 players, Algorithm 6.

Figure 4.3: SINR versus the number of iterations, Algorithm 6.
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Figure 4.4: Average ISL versus the number of active players, Algorithm 6. ISL at the

NE points (solid-circle red line); ISL with a random choice (solid-cross blue line).

at hand, we assume a maximum of 10 radars), obtained with the Algorithm

6 and the no-game strategy, respectively. In the setup of this simulation, ran-

dom initial strategies have been selected for the radars and the results have

been averaged over 25 independent trails. The plots highlight that the no-game

approach is very sensitive to the number of sensors composing the network;

in fact increasing values of ISL can observed when the number of active radars

increases. On the contrary, the updating procedure of Algorithm 6 is capable

of ensuring a quite flat ISL behavior.

In Figures 4.5a and 4.5b, we focus on the performance of Algorithm 7,

and similar comments as for the previous two algorithms can be made. It is

here observed an even greater average increase, in terms of SINR, than in the
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(a) SINR versus the number of iterations, for a set of L = 4 players, Algorithm 7.
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(b) SINR versus the number of iterations, for a set of L = 4 players, Algorithm 7.

Figure 4.5: SINR versus the number of iterations, Algorithm 7.
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Figure 4.6: Average PSL versus the number of active players, Algorithm 7. PSL at the

NE points (solid-circle red line); PSL with a random choice (solid-cross blue line).

aforementioned two techniques, which can be quantified in 2.12 dB for the

first game, and 3.12 dB for the second one.

In Figure 4.6, we consider the average PSL versus the number of active

radars, for both the no-game approach and the non-cooperative game tech-

nique of Algorithm 7. The same simulation conditions as in Fig. 3c have

been considered concerning the initial choice. Notice that the average PSL

for the no-game approach appears quite unpleasant, as worse and worse PSL

values are obtained increasing the number of active sensors. On the contrary,

Algorithm 7 seems quite robust in terms of PSL with respect to the number

of active radars.
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Figure 4.7: Average SINR versus the number of active radars. Algorithm 5: SINR

at the NE points (solid-circle blue line); SINR with a random choice (dotted-cross

blue line). Algorithm 6: SINR at the NE points (solid-star magenta line); SINR with

a random choice (dotted-point magenta line). Algorithm 7: SINR at the NE points

(solid-diamond green line); SINR with a random choice (dotted-plus green line).

Finally, in Figure 4.7, we analyze the average SINR among all the radars,

at the NE, versus the number of active radars in the network, with respect to

Algorithms 5, 6, and 7; in particular, for the latter two algorithms, the curves

refer to the SINR values for the NE points of Figures 4.4 and 4.5 (as such ran-

dom initial strategies have been considered for the radars operate according to

a no-game approach and the results are averaged over 25 independent trials);

for comparison purposes, we also report the average SINR obtained when the

radars operate in a no-game scenario. The plots confirm that, at the Nash

equilibria, the radar network actually may enjoy an increase in terms of SINR,

with respect to the case in which no-game is allowed. Moreover, as expected,
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the performance gracefully decades as the number of active radars increases.

This is a pretty natural behavior, since the larger the number of radars the

larger the power of the interfering signals.

Overall, the results of this section confirm the effectiveness of the proposed

algorithms, as well as that all the considered games converge to an equilib-

rium.

4.5 Conclusion

In this chapter, we have considered a network of radars sharing the same

frequency band, and tuning their transmitted waveforms in order to improve

their SINR.

We have assumed that each radar can select the waveform to be transmit-

ted from a finite set. Hence, we have proposed code updating strategies ac-

cording to some non-cooperative games, based on the potential games frame-

work, to account for the cases of matched filter detection, minimum ISL and

minimum PSL detection. Finally, we have discussed the situation where a

non-negligible Doppler shift exists in the received data. In all the considered

scenarios, the existence of Nash equilibria is analytically proven.
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Numerical results have confirmed that the proposed games are effective in

improving the system performance, in the sense that at the NE each radar

may enjoy a SINR that is larger than that corresponding to the case of a ran-

dom choice of the coded waveform to transmit. Moreover, it has also been

verified that there is a graceful performance degradation as the number of

active radars increases.

Possible future research tracks might account for the possibility of some

form of cooperation between the radars of the network as well as the extension

of the procedure to the case where more advanced decision strategies (in place

of the linear filter followed by an envelope detector) are used. By doing so, we

can also confer to the system additional desired robust features such as for

instance the Constant False Alarm Rate (CFAR) property.

4.6 Appendix

4.6.1 Code design procedure

We choose our N dimensional radar codes so that ||c|| = 1, c ∈ CN ; otherwise

stated, we fill the set Ω with sequences lying on the unit-norm sphere. To this
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end, we consider both standard codes available in open literature and ad-hoc

coding procedure.

As to the former class, we refer to some well known phase-coding tech-

niques [18] to design the first 13 possible transmit sequences of the set Ω.

Specifically, we assume that cl =
1√
N
e
√
−1φl, where φl = [φl(1), . . . , φl(N)]T is the

phase sequence of the l-th code, and l = 1, . . . , 13. In Table 4.1, we summarize

the classes of phase codes herein used, as well as the values of the parameters

applied in the respective design procedures4.

Additionally, to properly test our non-cooperative procedures, we increase

the number of possible strategies enriching with other suitable codes the set

Ω. We resort to the following construction procedure. First of all, we force

the coefficients cl(i), i = 1, . . . , N , to belong to a well defined finite set Ω∗ with

cardinality M . Then, we obtain the transmit sequences picking up randomly

the codes from the set ΩN∗ with cardinality MN . Finally, we normalize the

selected sequences so as to get unit-norm codes. For the specific case at hand,

we set cl(i) , {ai +
√
−1bi}/

√
2N for l = 14, . . . , 113, with {ai, bi} ∈ {−1,+1}2. With

such a choice we can produce up to 22N possible codes. Thus, we randomly

4The reader might refer to [18], which is an exhaustive compendium of the classic radar
coding techniques.
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choose 100 codes from such a set, and use them in our simulations.

The aforementioned construction procedure does not provide sequences

very attractive from the radar point of view; indeed, it can lead to signals

with significant modulus variations, poor range resolution, high peak sidelobe

levels, and more in general, to signals with an undesired ambiguity func-

tion behavior. This drawback can be circumvented imposing a control on the

aforementioned performance metrics at the code design stage. Precisely, we

can start from a good (in the sense of the ambiguity function properties) code

c0 and devise some additional sequences which inherit some attractive prop-

erties of c0. This goal can be achieved forcing the new sequences to lie in a

suitable norm-ball centered around c0. In other words, we consider sequences

which are solutions to the feasibility problem





||c− c0||2 ≤ ǫ

||c||2 = 1

. (4.35)

where the parameter ǫ ∈ [0, 2] quantifies the desired similarity level; the smaller

ǫ, the higher the degree of similarity among the ambiguity functions of the

designed radar code and the reference sequence.
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Solutions to problem (4.35) can be found according to the following algo-

rithm.

1. Denote by a an N-dimensional complex vector whose elements are con-

tinuous random variables.

2. Construct the unit-norm vector c⊥
0
= (I − c0c

†
0
)a/‖(I − c0c

†
0
)a‖.

3. Define the sequence ct =
√
tc0 +

√
1− tc⊥

0
, where the parameter t complies

with t ≥ (1− ǫ/2)2 = δǫ and t ≤ 1.

Exploiting the above procedure, we have updated the set Ω, so as to include

additional 540 transmit sequences. In Table II, we show the set of reference

codes; for each sequence, we solve problem (4.35) K = 15 times (with 15 differ-

ent feasible values of t), thus devising 9K possible codes. Finally, the proce-

dure is implemented for δǫ ∈ {0.41, 0.63, 0.75, 0.9}.
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Table 4.1: Classes of phase-codes φ; length N = 16; {r, q} design parameters [18].

parameters φl parameters φl

r = 15 Golomb-Zhang // Palindronic P4

// MPS r = 3 Chu

// Zadoff-Chu r = 13 Golomb-Zhang

r = 5, q = 10 Zadoff r = 17 Chu

r = 27, q = 8 Zadoff r = 3, q = 16 Zadoff

// P3 r = 21, q = 0 Zadoff

r = 3 Golomb-Zhang // //

Table 4.2: Set of similarity codes. c0 = 1√
N
ejφ0: reference code; length N = 16; {r, q}

design parameters [18].

parameters φ0 parameters φ0

r = 3 Chu // Px

// Frank r = 17 Golomb-Zhang

// MPS r = 6, q = 6 Zadoff

// P4 // Polyphase Barker

// P1 // //
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Chapter 5

Design of Pareto-Optimal Radar
Receive Filters

5.1 Introduction

The design of optimized low sidelobe receive filters for pulse compression

radar systems is a hot research topic among the radar signal processing com-

munity since 1960’s [41, 90]. It is of fundamental interest for many radar

applications including ground-based surveillance, Air Traffic Control (ATC),

anti-wind shear, and radar metereology.

Some early studies can be dated back to 1967-1968 [91, 92], with reference

to the IEEE journals, while to 1970 [83, 88], in the context of Russian litera-

ture. In [93], a literary survey and a selected reference list on this interesting

problem is provided together with some new contributions concerning issues

related to the filter length and the choice of the design criterion. According

208
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to [93], the receiving filters proposed over the years can be classified into two

main categories. The former, data independent class, does not require any

prior knowledge about the surrounding environment, whereas the latter, data

dependent class, depends on the assumed (possibly estimated) parameters of

the environment. With reference to the former class, we quote [88, 84], and

[85] where the minimum Integrated Sidelobe Level (ISL) filter [88] and the min-

imum Peak Sidelobe Level (PSL) filter [84, 85] are respectively designed. While

the minimum ISL system shares a closed form solution, the computation of

the minimum PSL filter requires the solution of a Linear Programming (LP)

problem [84, 85], with reference to real optimization variables and transmit-

ted code sequence, or the solution of a convex optimization Second Order Cone

Programming (SOCP) problem [93] in the case of complex variables. Indeed,

SOCP [94] problems represent a family of convex optimization programs of

great interest for many signal processing applications such as beamforming

[95] and target localization [96].

In this chapter, we still focus on the problem of radar receive filter optimiza-

tion, assuming the same signal model as in [93]. We propose a new design

algorithm, based on the following criterion: joint optimization of the sidelobe
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energy and the peak sidelobe level. This task is tantamount to jointly minimiz-

ing quadratic forms, so that the resulting design problem can be formulated in

terms of a multi-objective optimization problem. In order to solve it, we resort

to the scalarization technique, where the original vectorial problem is reduced

to a scalar one through the use of the Pareto-optimal theory. Thus, the pro-

posed filters are chosen as Pareto-optimal points1 of the previously mentioned

multi-objective optimization problem. The performance of the algorithm is

evaluated in terms of filter response, ISL, and PSL highlighting the role played

by the Pareto weight in the design procedure. Particular emphasis is given to

the trade-off existing between the aforementioned metrics. Indeed, it is pos-

sible to show that a low peak sidelobe level can be swaped for a reduction of

the total sidelobe energy. The trade-off is ruled by the Pareto weight, which

indeed represents the parameter defining the relative importance of the two

objectives in the optimization problem, namely the cost required for improving

a given objective (namely, the ISL) making worse the other (namely, the PSL).

The chapter is organized as follows. In Section 5.2, we present both the

signal and the receiver models; then we formulate the design problem provid-

1A Pareto-optimal solution of a multi-objective optimization problem is defined as any so-
lution that can’t be improved with respect to a component without worsening the others [22].
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ing the algorithm for the Pareto-optimal filter construction. In Section 5.3, we

assess the performance of the filter design scheme, also in comparison with

the minimum ISL and the minimum PSL filters. Finally, conclusions are given

in Section 5.4.

5.1.1 Notation

We adopt the notation of using boldface for vectors a and matrices A. The

i-th element of a and the (l, m)-th entry of A are respectively denoted by a(i)

and A(l, m). The transpose operator and the conjugate transpose operator are

denoted by the symbols (·)T and (·)H respectively. The letter j represents the

imaginary unit (i.e. j =
√
−1). C is the set of real and complex numbers.

For any complex number x, we use ℜ(x) and ℑ(x) to denote respectively the

real and the imaginary part of x, |x| and arg(x) represent the modulus and

the argument of x. v⋆(·) stands for the optimal value of the problem (·). The

Euclidean norm of the vector x is denoted by ‖x‖. Finally, 0 denotes a zero

vector or matrix as long as the size of it is clear from the context.
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5.2 Problem Formulation and Mismatched Filter

Design

Assume that the transmitted signal is a coded pulse; denote by M the num-

ber of subpulses and by [s(1), . . . , s(M)]T the radar code. The waveform at the

receiver end is down-converted to baseband, undergoes a subpulse matched

filtering operation, and then is sampled. The vector r = [r(1), . . . , r(P )]T (P =

2L +M , with L being a design parameter) of the samples from the range cell

under test can be written as [93, 81]2

r = α0s+
N−1∑

n=−N+1,n 6=0

αnJns+ n , (5.1)

where N = P − L(= L +M), s = [0, s(1), . . . , s(M), 0]T ∈ CP (0 is the zero row

vector of dimension L), αn’s are complex scalars accounting for the Radar

Cross Sections (RCS’s) of the range cells illuminated by the radar and for the

channel propagation effects (in particular α0 refers to the RCS of the cell under

test), n is the vector (assumed white) containing the filtered noise samples, and

2See these references for more details on the system model.
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∀n ∈ {1, . . . , N − 1}

Jn(l, m) =





1 if m− l = n

0 if m− l 6= n

(l, m) ∈ {1, . . . , P}2

denotes the shift matrix. Finally J−n = JT
n .

In order to estimate α0, as in [93], we focus on estimators whose analytic

form is

α̂0 =
xHr

xHs
, (5.2)

where x is a suitable P -dimensional complex vector (receive filter) which can

be designed according to several criteria. In particular, if x = s, it is the

classic matched filter to the signal s. Otherwise, it is usually referred to, in

open literature, as mismatched filter or instrumental variable filter [93, 89].

Relevant performance metrics to optimize in the design of a receive fil-

ter are related to the energies in the sidelobes of the filter, i.e. |xHJns|2
|xHs|2 ,

n = ±1, . . . ,±(N − 1). Specifically, if one wants to optimize the total en-

ergy underlying the range sidelobes, it is possible to minimize the ISL ,

∑N−1
n=−N+1,n 6=0

|xHJns|2
|xHs|2 [81, 88], so as to obtain the minimum ISL filter as an
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optimal solution to the optimization problem

min
x∈CP

N−1∑

n=−N+1,n 6=0

|xHJns|2
|xHs|2 . (5.3)

Conversely, if the main concern is to optimize the level of sidelobe peaks,

the metric to be considered is the PSL , maxn=±1,...,±(N−1)
|xHJns|2
|xHs|2 . Hence, the

minimum PSL filter coincides with an optimal solution to the optimization

problem

min
x∈CP

max
n=±1,...,±(N−1)

|xHJns|2
|xHs|2 . (5.4)

Both ISL and PSL approaches are included in the more general problem of

minimizing the Lp-norm of the vector containing the energies of the sidelobes.

This mismatched filter design criterion is proposed in [97], where an iterative

algorithm attempting to obtain an optimal solution to the problem is intro-

duced. However, the iterative technique of [97] has no known convergence

properties even if simulation results show its effectiveness in some analyzed

scenarios.

Indeed, providing a filter jointly optimized with respect to the two afore-

mentioned metrics represents an attractive task. Such a need is in part jus-
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tified by the growing demand for more and more involving signal processing

procedures, with particular emphasis to those capable of adapting their char-

acteristics to different clutter features.

The idea pursued in this chapter is to formulate the problem in terms of

the following multi-objective optimization problem [22, pp. 174-187]:

min
x∈CP

(
N−1∑

n=−N+1, n 6=0

|xHJns|2
|xHs|2 , max

n=±1,±2...,±(N−1)

|xHJns|2
|xHs|2

)
(5.5)

where the objective is now a vector-valued function which accounts for

both ISL and PSL. The main goal is to design an algorithm capable of com-

bining a low energy profile with acceptable range sidelobe peaks. We resort

to the scalarization technique in order to find filters which are Pareto-optimal

solutions for (5.5) (more details about this topic can be found in [22, 98]).The

resulting scalarized problem is proved equivalent to a convex SOCP problem

which can be easily solved through interior point methods with a polynomial-

time computational complexity.
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5.2.1 Pareto-Optimal Receive Filter Design

This section is devoted to the design of Pareto-optimal mismatched filters;

namely, we focus on filters which are Pareto-optimal solutions of problem

(5.5). To this end, let us denote by an = Jns, n = ±1, . . . ,±(N − 1), a0 = s, and

A = [a−N+1, . . . ,a−1,a1, . . . ,aN−1]
H ∈ C(2N−2)×P .

As a consequence, |xHJns|2 = |aHn x|2,
∑N−1

n=−N+1,n 6=0 |xHJns|2 = xH(AHA)x and

|xHs|2 = |aH0 x|2.

In the following, we exploit the scalarization technique [22, pp. 174-187] to

determine the Pareto-optimal points of the vector optimization problem (5.5).

Precisely, let us choose any λ≻R203, consider the scalar optimization problem

min
x∈CP

[
λ1

(
N−1∑

n=−N+1, n 6=0

|aHn x|2
|aH0 x|2

)
+ λ2

(
max

n=±1,±2...,±(N−1)

|aHn x|2
|aH0 x|2

)]
, (5.6)

and let x be an optimal point. Then, according to the scalarization technique,

x is a Pareto-optimal point for problem (5.5). The parameter λ represents the

Pareto weight vector; namely, the vector containing the coefficients ruling the

3We say that λ , (λ1, λ2)≻R20 if λ1 > 0 and λ2 > 0.
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relative importance of the scalar components. The choice of the parameter

λ plays a primary role in the determination of the Pareto points; indeed, it

quantifies our desire to advantage a metric with respect to the other. We

explicitly notice that, setting in (5.6) λ1 6= 0 and λ2 = 0, we obtain the minimum

ISL filter, while, if λ1 = 0 and λ2 6= 0, we come up with the minimum PSL filter.

Other values of λ≻R2 0 lead to different compromises between the ISL and the

PSL.

In order to find Pareto-optimal solutions to (5.6), we recast problem (5.6)

into the following problem

min
x∈CP

λ1
[
xH(AHA)x

]
+ λ2

[
max

n=±1,...,±(N−1)
xH(ana

H
n )x

]

s.t. xH(a0a
H
0 )x = 1

, (5.7)

Additionally, we observe that multiplying x for a scalar complex exponential

does not affect both the constraint and the objective function; therefore, prob-
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lem (5.7) is equivalent to

min
x∈CP

λ1
[
xH(AHA)x

]
+ λ2

[
max

n=±1,...,±(N−1)
xH(ana

H
n )x

]

s.t. ℜ(aH0 x) = 1.

(5.8)

Problem (5.8) can be reformulated as a convex optimization problem which

belongs to the class of the SOCP problems [94]. Specifically, for λ2 6= 0 (if λ2 = 0,

we obtain the minimum PSL filter [84], [85]), problem (5.8) can be written as

min
x∈CP

max
n=±1,...,±(N−1)

xH
(
γAHA+ ana

H
n

)
x

s.t. ℜ(aH0 x) = 1,

(5.9)
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where γ , λ1
λ2

, or equivalently as

min
x,t

t

s.t. ‖Anx‖2 ≤ t, n = ±1, . . . ,±(N − 1) ,

ℜ(aH0 x) = 1,

x ∈ CP , t ∈ R ,

(5.10)

where An ,




√
γA

aHn




.

The parameter γ can be interpreted as the weight given to the second objec-

tive (namely, the total energy under the sidelobes) with respect to the first one

(namely, the peak level of the sidelobes); this clearly implies that an optimal

solution to problem (5.8) is a function of the Pareto weight.
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5.3 Performance Analysis

In this section, we assess the performance of the receive filter introduced

in the previous section in terms of output modulus when the input is the

transmitted sequence (zero-Doppler cut of the cross-ambiguity function), ISL,

and PSL. Additionally, we provide the Pareto-optimal curve, i.e.





ISL⋆ , x⋆H(γ)(AHA)x⋆(γ),

PSL⋆ , max
n=0,±1,...,±(N−1)

x⋆H(γ)(ana
H
n )x

⋆(γ),

(where ISL⋆ and PSL⋆ represent, respectively, the objective values of (5.3) and

(5.4) in correspondence of an optimal solution x⋆(γ) to (5.9)); namely, the set of

Pareto-optimal values, obtained through scalarization and varying the relative

weight γ, for the considered optimization problem. To this end, we resort to a

four-phase, length M = 34, code with a quite low peak to sidelobe level equal

to −19.49 dB, designed according to the method described in Appendix-A of

[81]. Moreover, we use SeDuMi software [25] in our simulations to solve the

SOCP problem.

In Figure 5.1, we show the output modulus of the receive filter in Section

II-A for P = 74 and for some values of the Pareto weight γ. In the same figure,
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Figure 5.1: Filter Output modulus versus the tap number. Minimum ISL filter

(plus-dashed green curve); minimum PSL filter (circle-solid black curve); matched

filter (cross-dashed blue curve); Pareto-optimal mismatched filter (5.9) with γ ∈
{0.01, 0.02, 0.05, 0.07, 0.1} (solid red curves).

we also plot the outputs of the minimum ISL filter, the minimum PSL filter,

and the matched filter. From the plots, we can notice that the parameter γ

rules the tradeoff between ISL and PSL of the filter output. Indeed, increas-

ing γ we obtain filter responses which are closer and closer to the minimum

ISL filter output. This is of course expected, as the greater γ, the higher the

importance, in the optimization procedure, of the ISL feature with respect to

the PSL one. This aspect is emphasized in Figure 5.2, where the related

Pareto-optimal curve is plotted, as γ ranges in the interval [0, 0.1]. The curve is

generally referred to as optimal trade-off curve, because it highlights the con-
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Figure 5.2: Pareto-optimal curve for γ ∈ [0, 0.1], with a four-phase code of length

M = 34. The set of achievable values above the curve is shaded in gray.

nection between the two objectives, ISL⋆ and PSL⋆, highlighting the role of the

weight in the determination of their Pareto-optimal values and the cost paid

for increasing one component with respect to the other. The shaded region

indicates the set of all the achievable values (ISL,PSL); for example, intercept-

ing the curve with the vertical line ISL= η (thus considering a certain fixed

value for the ISL), we can observe how big PSL has to be in order to achieve

ISL= η. The same interpretation arises intercepting the curve with an hori-

zontal line PSL= β (thus considering a certain fixed value for the PSL), which

makes evident the minimum achievable value ISL in order to ensure PSL= β.

The slope of the optimal trade-off curve at a Pareto-optimal value shows the
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Table 5.1: ISL and PSL in dB for the Pareto-optimal mismatched filter (5.9), P = 74
and γ ∈ {0.01, 0.02, 0.05, 0.07, 0.1.}

.

γ ISL PSL

0.01 −10.017 −29.192

0.02 −10.215 −28.970

0.05 −10.460 −28.440

0.07 −10.582 −28.193

0.1 −10.593 −27.890

Matched
Filter

−4.675 −19.49

Minimum ISL
Filter

−10.885 −23.064

Minimum
PSL Filter

−9.610 −29.330

local optimal trade-off between the two objectives; steep slopes lead to large

variations of ISL⋆ in correspondence of small changes in PSL⋆ (this is actually

what happens in the lower right region of the curves in Figure 5.2). In Table

5.1, we explicitly report the tradeoff between ISL and PSL; as already pointed

out, increasing γ is tantamount of getting lower and lower PSL values, at the

price of higher and higher ISL levels.

In Figures 5.3a-5.3b, we analyze the behavior of the ISL and PSL (still for

the filter designed according to the criterion of Section II-A) versus the param-
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eter L, which rules the length of the filter. For comparison, in the same figures,

we also report the behavior of the minimum ISL filter, the minimum PSL filter,

and the matched filter. The plots confirm that the longer the filter, the lower

the corresponding ISL and PSL values. Indeed, this result is expected, since

increasing L is tantamount to providing more degrees of freedom to the filter

optimization process.

Finally, in Figures 5.4a-5.4b, we analyze the Doppler tolerance of the filters

shown in Figure 5.1. Specifically, we assess the degradation of the actual ISL

and PSL due to the presence of a Doppler shift in the useful signal. The curves

in the figures, representing either ISL or PSL versus the normalized Doppler

frequency νd, ranging in the interval [−∆ν ,∆ν ], highlight that the higher the

target Doppler (i.e. the discrepancy from the nominal condition), the worse

the ISL and PSL associated with the filter (for all the considered values of the

parameter γ). Nevertheless, for the simulated shift values, the new filters still

guarantee a performance level which is superior than that ensured by the

matched filter, both in terms of ISL and PSL.
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(a) ISL versus L for the Filters in Figure 5.1.

(b) PSL versus L for the Filters in Figure 5.1.

Figure 5.3: a) ISL versus L for the Filters in Figure 5.1; b) PSL versus L for the Filters

in Figure 5.1. L = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. Matched-Filter (blu x-dashed

curve). Minimum ISL filter (green circle-dashed curve). Pareto-optimal mismatched

filters (red-solid curves).
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(a) ISL versus νd for the Filters in Figure 5.1.

(b) PSL versus νd for the Filters in Figure 5.1.

Figure 5.4: a) ISL versus νd for the Filters in Figure 5.1; b) PSL versus νd for the

Filters in Figure 5.1. ∆ν = 0.005. Matched Filter (blue-solid curve). Minimum ISL

Filter (green-solid curve). Pareto-optimal Mismatched Filters (red-solid curves).
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5.4 Conclusions

In this chapter, we have considered the design of radar receive filters ac-

cording to the following criterion: joint optimization of the ISL and PSL perfor-

mance metrics. The problem has been formulated in terms of a multi-objective

optimization problem. In order to solve it, we have resorted to the scalariza-

tion technique, thus focusing on the solutions which are Pareto-optimal for

the aforementioned problem. At the analysis stage, we have assessed the

performance of the considered receive systems providing filter responses and

highlighting the tradeoff between ISL and PSL. Moreover, we have studied the

Pareto-optimal curve, showing the effects of the Pareto weight on the perfor-

mance trade-off. Finally, we have analyzed the Doppler tolerance associated

with the considered receive systems.

Possible future developments might be focused on the comparison between

the proposed design criterion and that based on the Lp norm minimization of

the filter sidelobe energies. Additionally, it might be of interest the study of

quantization effects on the filter coefficients as well as of the possible imbal-

ance between the I and Q channels of the processing chain.
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Chapter 6

Cognitive Design of the Receive
Filter and Transmitted Phase Code
in Reverberating Environment

6.1 Introduction

The problem of radar waveform diversity and receiver optimization has been

addressed over and over during the last few decades, due to the increasing per-

formance requirements in terms of target tracking accuracy, range-Doppler

resolution, mainlobe clutter rejection and low sidelobe signal and/or filter

design. The growth in terms of technology, such as new computing archi-

tectures, high speed and Off The Shelf (OTS) processors, and digital arbitrary

waveform generators, had made possible to perform very complex and effective

signal processing [41, Ch. 6, 11, 25], leading the path to the recent cognitive

paradigm (see [42], [43], [44], and [70]), which states indeed a new success

228
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frontier for radar signal processing. Its main innovation concerns the smart

use of some a-priori information and previous radar experiences about the op-

erating environment (as for instance location of electromagnetic interferences,

reflectivity characteristic of the environment, weather conditions and discretes

clutter).

Two principal research modalities, exploiting the waveform diversity to im-

prove the radar performances, have emerged. The first is focused on the

signal-independent interference and well models, but is not limited to, radar

environments where the main contribution to the disturbance is represented

by thermal noise, and/or intentional interference (Jammers), and/or unin-

tentional emissions by information sources, and/or terrain scattering due to

signals from other radar platforms (hot clutter), [30, 24, 46, 47]. The latter

assumes a reverberant environment, namely a signal-dependent clutter sce-

nario, with disturbances produced by radar reflections from terrain or non-

threating targets in the surveillance volume. For a point-like target embedded

in signal-dependent clutter, optimization of the transmit signal and receive fil-

ter to maximize the Signal to Interference plus Noise Ratio (SINR) has been

accomplished, assuming both an energy constraint [48] and a dynamic range
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constraints [49], on the transmitted waveform. Implementation errors [49],

amplitude and phase modulation limitations [51], and quantization error ef-

fects [52], have also been considered, modifying the procedure of [48]. In [99],

a cognitive approach for the design of the transmit signal (amplitude-phase

modulated pulse train) and receive filter, accounting for a similarity between

the transmitted sequence and a prescribed radar code, has been devised. In

[82], innovative algorithms for optimizing the mean-square error of a target

backscattering estimate in the presence of signal-dependent clutter, have been

derived. Either a constant-modulus or a low Peak to Average power Ratio (PAR)

constraint has been enforced on the transmitted waveform. For a zero-Doppler

Gaussian point target in the presence of signal-dependent Gaussian clutter,

modeled as the output of a stochastic Linear-Time-Invariant (LTI) filter with

a stationary Gaussian shaped impulse response, analytic approaches to op-

timizing the energy-constrained transmit signal spectrum while maximizing

detection performance have been introduced [55].

In this chapter, we address the joint optimization of the transmit signal and

receive filter for a radar system which operates in a highly reverberant environ-

ment, focusing on both continuous and finite alphabet phase codes. Specifi-
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cally, we suppose that the radar system can predict the actual scattering envi-

ronment, using a dynamic environmental database, including a geographical

information system, meteorological data, and some electromagnetic reflectivity

and spectral clutter models. Thus, exploiting the aforementioned information

and considering as figure of merit the SINR, we devise a suitable radar phase

code and receive filter, under a similarity constraint between the sought wave-

form and a reference code [30], [24].

The devised constrained optimization procedure sequentially improves the

SINR. Each iteration requires the solution of both a convex problem and an

NP-hard optimization problem. As to the NP-hard quadratic fractional opti-

mization problem, we resort to the relaxation and randomization approach

[24] in order to find a good quality solution. The resulting computational com-

plexity is linear with the number of iterations and trials in the randomized

procedure, and polynomial with the receive filter length. The performance of

the new algorithm is analyzed in a homogeneous clutter environment, show-

ing that interesting SINR improvements can be obtained jointly optimizing the

transmitter and the receiver.

The chapter is organized as follows. In Section 6.2, we describe the system
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model. In Section 6.3, we formulate the constrained optimization problems

for the design of (continuous or finite alphabet) radar phase codes and the

receive filters. Additionally, we introduce two sequential optimization proce-

dures to obtain high quality solutions to these problems. In Section 6.4, we

assess the performance of the proposed algorithms. Finally, in Section 6.5,

we draw conclusions and discuss possible future research tracks.

6.1.1 Notation

We adopt the notation of using boldface for vectors a, and matrices A; the

i-th element of a and the (l, m)-th entry of A are respectively denoted by a(i)

and A(l, m). The conjugate transpose operator is denoted by the symbol (·)†,

while (·)∗ and (·)T denote, respectively, the conjugate and the transpose oper-

ator. I indicates the identity matrix (its size is determined from the context).

CN and HN are respectively the sets of the sets of N-dimensional vectors of

complex numbers and N ×N Hermitian matrices. The curled inequality sym-

bol � is used to denote generalized matrix inequality: for any A ∈ HN , A � 0

means that A is a positive semidefinite matrix. tr(·) is the trace of the square

matrix argument, while diag{a} indicates the N-dimensional diagonal matrix
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whose i-th diagonal element is a(i), for i = 1, . . . , N . The Euclidean norm of

the vector x is denoted by ‖x‖. The l∞ norm of the vector x is defined as

||x||∞ = max
k∈(1,...,N)

|x(k)|, while ⌊·⌋ denotes the integer floor operation. For any

complex number x, we use ℜ(x), |x|, and arg(x) to indicate respectively the

real part, the modulus, and the argument of x. E [·] denotes the statistical

expectation. The letter j represents the imaginary unit. Finally, ⊙ indicates

the Hadamard product.

6.2 System Model

We consider a monostatic radar system which transmits a coherent burst

of N pulses. The waveform at the receiver end is down-converted to baseband,

undergoes a pulse matched filtering operation, and then is sampled. The N-

dimensional column vector v = [v(1), v(2), . . . , v(N)] ∈ CN of the observations,

from the range-azimuth cell under test, can be expressed as

v = αTs⊙ p(νdT ) + c+ n, (6.1)
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with s = [s(1), s(2), . . . , s(N)]T ∈ CN the radar code, αT a complex parameter

accounting for the target response, p(νdT ) = [1, ej2πνdT , . . . , ej2π(N−1)νdT ]T , νdT the

normalized target Doppler frequency, c ∈ CN the vector of clutter samples, and

n ∈ CN the vector of noise samples.

The clutter vector c is modeled as the superposition of returns from different

uncorrelated scatterers, each from the (r, i)−th range-azimuth bin, namely:

c =

Nc−1∑

r=0

L−1∑

i=0

α(r,i)J r

(
s⊙ p(νd(r,i))

)
,

where Nc ≤ N is the number of range rings that interfere with the range-

azimuth bin of interest (0, 0), L is the number of discrete azimuth sectors, α(r,i)

and νd(r,i) are, respectively, the echo and the normalized Doppler frequency of

the scatterer in the range-azimuth bin (r, i); furthermore, ∀r ∈ {0, . . . , N − 1}

J r(l, m) =





1 if l −m = r

0 if l −m 6= r

(l, m) ∈ {1, . . . , N}2,
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where Jr = JT
−r denotes the shift matrix. As to the statistical characterization

of the noise vector n, we assume that it is zero-mean and white, i.e.:

E [n] = 0, E
[
nn†] = σ2

nI.

Now, let us focus on the statistical characterization of the clutter vector c. As

previously stated, we suppose that the scatterers are uncorrelated; moreover,

for each scatterer, we denote by σ2
(r,i) = E

[
|α(r,i)|2

]
, assume that the expected

value of its complex amplitude is zero, i.e. E
[
α(r,i)

]
= 0, and that its normalized

Doppler frequency, statistically independent of α(r,i), is uniformly distributed

around a mean Doppler frequency ν̄d(r,i), i.e. νd(r,i) ∼ U
(
ν̄d(r,i) −

ǫ(r,i)
2
, ν̄d(r,i) +

ǫ(r,i)
2

)
.

As a consequence, we have: E [c] = 0 and

Σc (s) = E
[
cc†
]
=

Nc−1∑

r=0

L−1∑

i=0

σ2
(r,i)J rΓ(s, (r, i))J

T
r , (6.2)

where

Γ(s, (r, i)) = diag{s}Φ
ν̄d(r,i)
ǫ(r,i) diag{s}†,
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and, ∀ (l, m)∈{1, . . . , N}2,

Φν̄d
ǫ (l, m)=e(j2πν̄d(l−m)) sin[πǫ(l−m)]

[πǫ(l −m)]
.

A relevant scenario, which can be described and modeled according to (6.2), is

now described (see also [99]). Let us assume that, for any (r, i) range-azimuth

bin, the Radar Cross Section (RCS) σ
(r,i)
0 of the scatterer is predicted through

the interaction between a digital terrain map, such as the National Land Cover

Data (NLCD) and RCS clutter models. Whenever σ
(r,i)
0 has been estimated,

according to the previous information, we can evaluate σ2
(r,i) as

σ2
(r,i) = σ

(r,i)
0 Kr|G (θi) |2,

where Kr is a constant accounting for the channel propagation effects, such as

the free space two-way path loss and additional system losses (radar equation),

θi is the azimuth angle of the bin (r, i), and G (θ) is the one-way antenna gain

for the angle θ.
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6.3 Problem formulation and Design Issues

We deal with the design of a suitable radar code and receive filter maximiz-

ing the SINR, under some constraints on the shape of the code. Specifically,

assuming that the vector of observations v is filtered through w, the SINR at

the output of the filter1 can be written as:

SINR =
|αT |2

∣∣w† (s⊙ p(νdT ))
∣∣2

w†Σc (s)w + σ2
n‖w‖2 , (6.3)

where |αT |2
∣∣w†(s⊙ p(νdT ))

∣∣2 is the useful energy at the output of the filter, while

σ2
n‖w‖2 and w†Σc (s)w represent, respectively, the noise and the clutter en-

ergy at the filter output. Notice that the clutter energy w†Σc (s)w function-

ally depends both on the receive processing w and the transmitted waveform

through Σc (s) (namely it is a quartic polynomial in variables w and s). This

observation represents the main difference between a signal-dependent and

a signal-independent environment where the output clutter energy is only a

function of w, being a homogeneous quadratic form in that variable.

To develop our SINR optimization algorithm, we make use of the follow-

ing technical Lemma (whose proof is given in [99]) providing an alternative

1Obviously, we assume that w 6= 0.
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expression to the SINR:

Lemma 6.3.1. An equivalent expression of the SINR is given by:

SINR =
|αT |2

∣∣sT (w∗ ⊙ p(νdT ))
∣∣2

sTΘc (w) s∗ + σ2
n‖w‖2 (6.4)

where:

Θc (w) =

Nc−1∑

r=1

L−1∑

i=0

σ2
(r,i)diag{J−rw

∗}Φ
ν̄d(r,i)
ǫ(r,i) diag{J−rw}+

L−1∑

i=0

σ2
(0,i)diag{w∗}Φ

ν̄d(0,i)
ǫ(0,i) diag{w} .

As to the shape of the code, the focus is on both continuous alphabet phase

codes, i.e. |s(k)| = 1, k = 1, . . . , N , and finite alphabet phase code, namely

s(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N . Furthermore, a similarity con-

straint [30, 24] is enforced, namely

‖s− s0‖∞ ≤ δ , (6.5)

where the parameter δ ≥ 0 rules the size of the similarity region and s0 is a

prefixed phase code. By doing so, it is required the solution to be similar to a

known code s0, which shares some nice properties such as reasonable range-
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Doppler resolution and peak sidelobe level. In other words, imposing (6.5) is

tantamount to indirectly controlling the ambiguity function of the considered

coded pulse train: the smaller δ the higher the degree of similarity between

the ambiguity functions of the devised radar code and s0.

Summarizing, the joint design of the radar code and receive filter can be

formulated in terms of the following constrained optimization problems:

•

Pc






max
s,w

|αT |2
∣∣w† (s⊙ p(νdT ))

∣∣2

w†Σc (s)w + σ2
n‖w‖2

s.t. |s(k)| = 1, k = 1, . . . , N

‖s− s0‖∞ ≤ δ

(6.6)

for a continuous alphabet phase code;

•

Pd






max
s,w

|αT |2
∣∣w† (s⊙ p(νdT ))

∣∣2

w†Σc (s)w + σ2
n‖w‖2

s.t. s(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N,

‖s− s0‖∞ ≤ δ

(6.7)
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for a discrete alphabet phase code.

Problems Pc and Pd are non-convex optimization problems, since the ob-

jective function is a non-convex function and the constraints |s(k)|2 = 1, k =

1, . . . , N, and s(k) ∈
{
1, ej2π/M , . . . , ej2π(M−1)/M

}
, k = 1, . . . , N , define non-convex

sets. The technique that we adopt to find a good quality solution for Pc and

Pd is based on a sequential optimization procedure. The idea is to iteratively

improve the SINR. Specifically, given w(n−1), we search for an admissible radar

code s(n) at step n improving the SINR corresponding to the receive filter w(n−1)

and the transmitted signal s(n−1). Whenever s(n) is found, we fix it and search

for the adaptive filter w(n) which improves the SINR corresponding to the radar

code s(n) and the receive filter w(n−1), and so on. Otherwise stated, w(n) and s(n)

are used as starting point at step n + 1. To trigger the procedure, the optimal

receive filter w(0) to an admissible code s(0) is considered.

From an analytical point of view, w(n) is an optimal solution to the optimization

problem:

Pw(n)



 max

w

|αT |2
∣∣w† (s(n) ⊙ p(νdT )

) ∣∣2

w†Σc
(
s(n)
)
w + σ2

n‖w‖2
. (6.8)

As shown in [99], Pw(n) is solvable and a closed form optimal solution w(n)

can be found for any feasible s(n). Specifically, an optimal solution to Pw(n) is
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given by:

w(n) =

(
Σc
(
s(n)
)
+ σ2

nI
)−1 (

s(n) ⊙ p(νdT )
)

∥∥∥
(
Σc
(
s(n)
)
+ σ2

nI
)−1/2 (

s(n) ⊙ p(νdT )
)∥∥∥

2 , (6.9)

from which it is evident the dependence of w(n) on s(n) and the steering vector

p(νdT ). Furhermore, s(n) is given by:

s(n) = argmax

{
|αT |2

∣∣w(n−1)†
(
s(n−1) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(n−1)

)
w(n−1) + σ2

n‖w(n−1)‖2
,

|αT |2
∣∣w(n−1)†

(
s(⋆) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(⋆)
)
w(n−1) + σ2

n‖w(n−1)‖2

}

where s(⋆) is a good solution of problem Pc
s
(n) if the focus is on Pc, and a good

solution of problem Pd
s
(n)

if the focus is on Pd, respectively given by:

•

Pc
s
(n)






max
s

|αT |2
∣∣w(n−1)† (s⊙ p(νdT ))

∣∣2

w(n−1)†Σc (s)w
(n−1) + σ2

n‖w(n−1)‖2

s.t. |s(k)| = 1, k = 1, . . . , N,

‖s− s0‖∞ ≤ δ

; (6.10)
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•

Pd
s
(n)





max
s

|αT |2
∣∣w(n−1)† (s⊙ p(νdT ))

∣∣2

w(n−1)†Σc (s)w
(n−1) + σ2

n‖w(n−1)‖2

s.t. s(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N,

‖s− s0‖∞ ≤ δ

. (6.11)

Making use of [99, Proposition 2.1], the following Proposition 6.3.2 holds true:

Proposition 6.3.2. Let
{(

s(n),w(n)
)}

be a sequence of points obtained through

the proposed sequential optimization procedure, either for the continuous or the

discrete alphabet case; let SINR(n) be the SINR value corresponding to the point

(
s(n),w(n)

)
at the n−th iteration. Then:

• the sequence SINR(n) is a monotonic increasing sequence;

• the sequence SINR(n) converges to a finite value SINR⋆;

• starting from the sequence
{(

s(n),w(n)
)}

, it is possible to construct another

sequence
{(

s̃(n
′), w̃(n′)

)}
, that converges to a feasible point (s̃⋆, w̃⋆) of prob-

lems Pc or Pd, such that the SINR evaluated in (s̃⋆, w̃⋆) is equal to SINR⋆.

Let us observe that, from a practical point of view, the proposed optimiza-

tion procedure requires a condition to stop the iterations; to this end, an
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iteration gain constraint can be forced, namely |SINR(n)−SINR(n−1)| ≤ ζ, where

ζ is the desired gain. The next subsections will be devoted to the study of the

optimization problems Pc
s
(n) and Pd

s
(n)

required for implementing the proposed

sequential optimization procedures.

6.3.1 Radar Code Optimization: Solution of the Problem

Pc
s
(n)

An algorithm to find in polynomial time a good quality solution to the NP-

hard problem Pc
s
(n) is now described. Using Lemma 6.3.1, Pc

s
(n) can be equiv-

alently recast as the following problem P1:

P1






max
s

∣∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

)∣∣∣
2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. |s(k)| = 1, k = 1, . . . , N

‖s− s0‖∞ ≤ δ

, (6.12)

This is a non-convex fractional quadratic problem. Notice that, since |s(k)| =

|s0(k)| = 1, k = 1, . . . , N , the similarity constraint max
k∈[1,...,N ]

|s(k)− s0(k)| ≤ δ can
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be equivalently written as ℜ [s∗(k)s0(k)] ≥ 1 − δ2/2 for k = 1, . . . , N , which is

tantamount to imposing arg(s(k)) ∈ [γk, γk + δc], where γk = arg(s0(k))−arccos(1−

δ2/2) and δc = 2 arccos (1− δ2/2) for k = 1, . . . , N , [24]. Thus, problem (6.12) is

equivalent to:

P ′
1





max
s

∣∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

)∣∣∣
2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. |s(k)| = 1, k = 1, . . . , N

arg(s(k)) ∈ [γk, γk + δc] , k = 1, . . . , N

. (6.13)

Let us observe that problem P ′
1, even in the simpler formulation corre-

sponding to ǫ = 2, is generally NP-hard, consequently one cannot find polyno-

mial time algorithms for computing its optimal solutions. Hence, we focus on

approximation techniques and propose a relaxation and randomization algo-

rithm which provides a randomized feasible solution to (6.13). To this end, let

us indicate with

S =
(
w(n−1) ⊙ p(νdT )

∗) (w(n−1) ⊙ p(νdT )
∗)† , (6.14)
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and

M = Θc
(
w(n−1)

)∗
+
σ2
n

N
‖w(n−1)‖2I. (6.15)

The relaxed version of problem P ′
1, obtained neglecting the similarity con-

straint, namely the conditions arg(s(k)) ∈ [γk, γk + δc], k = 1, . . . , N , is given by

the following fractional quadratic problem P ′′
1 ;

P ′′
1






max
s

∣∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

)∣∣∣
2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. |s(k)| = 1, k = 1, . . . , N

, (6.16)

which is equivalent to

P ′′′
1





max
X, s

tr (SX)

tr (MX)

s.t. X(k, k) = 1, k = 1, . . . , N

X = ss†, s ∈ CN

. (6.17)

The Semidefinite Relaxation (SDP) [29] of problem P ′′′
1 , obtained dropping
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the rank-one constraint, is:





max
X

tr (SX)

tr (MX)

s.t. X(k, k) = 1, k = 1, . . . , N

X � 0

. (6.18)

In order to solve the fractional problem (6.18), following the guidelines of [67],

it suffices to solve the equivalent SDP problem:

(SDP)





max
X, u tr (SX)

s.t. tr (MX) = 1

X(k, k) = u

X � 0, u > 0

. (6.19)

Indeed, both problems (6.18) and (6.19) are solvable and have equal optimal

value; in fact, if
(
X̂, û

)
is an optimal solution of (6.19), than it can be shown

straightforward that X̂/û is an optimal solution of (6.18); also, if X̂ solves
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(6.18), than
(
X̂/tr(MX̂), 1/tr(MX̂)

)
solves (6.19). Thus, following the same

approach as in [24, pp. 8-9], a randomized feasible solution s(⋆) to problem

Pc
s
(n) can be computed using Algorithm 8, where H indicates the number of

randomizations involved in the procedure.

Algorithm 8 : Radar Phase Code Optimization

Input: M ,S, H, {γi}, δc.
Output: A randomized approximate solution s(⋆) to Pc

s
(n);

1: Let (X⋆, u⋆) be an optimal solution to problem (6.19).

2: Denote by X̂ = X⋆/u⋆.

3: Generate random vectors (ξ)h ∈ CN , h = 1, . . . , H, from the complex normal

distribution NC(0,Y ) where Y = X̂ ⊙ ycy
†
c, where yc = [e−jγ1 , . . . , e−jγN ]T .

4: Let (s(k))h = y∗c (k)σ((ξk)h), k = 1, . . . , N , h = 1, . . . , H, where σ(x) = ej
arg(x)

2π
δc,

x ∈ C.

5: Compute

th =
tr
(
s
†
hSsh

)

tr
(
s
†
hMsh

) , h = 1 . . . , H.

6: Pick the maximal value over {t1, . . . , tH}, say t1, and output s(⋆) = s1.

We point out that the H randomizations involved into steps 3-6 are meant

to improve the approximation quality; in fact the randomized feasible solution

yielding the largest objective value will be chosen as the approximate solution.

As to the computational complexity connected with the implementation of the

algorithm, the solution of the SDP relaxation requires O(N3.5) floating point
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operations (flops)2 whereas each randomization involves O(N2) flops [23]. It

follows that, for a modest number of randomizations, the most relevant con-

tribution to the computational complexity is connected with the SDP solution.

6.3.2 Radar Code optimization: Solution of the Problem

Pd
s
(n)

At the current state of the art, most radar systems use phase coded wave-

forms, where the phases are taken from a finite and regularly spaced alphabet.

As a consequence, in this subsection, we describe an algorithm to find in poly-

nomial time good solutions to the NP-hard problem Pd
s
(n)

.

Firstly, we assume that s0(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N , and3 M ≥ 2.

Then, using Lemma 6.3.1, we equivalently recast Pd
s
(n)

in terms of the following

2Herein, we use the Landau notation O(n); hence, an algorithm is O(n) if its implementation
requires a number of flops proportional to n [69].

3Notice that, for M = 2 and δ < 2, the optimal solution to problem (6.20) is the trivial one,
i.e. s(⋆) , s0.
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problem P2:

P2





max
s

∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

) ∣∣2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. s(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N

‖s− s0‖∞ ≤ δ

. (6.20)

This is a non-convex fractional quadratic problem. Notice that, accounting for

{s(k), s0(k)} ∈
{
1, ej2π

1
M , . . . , ej2π

M−1
M

}2

, k = 1, . . . , N , the constraint max
k∈[1,...,N ]

|s(k)−

s0(k)| ≤ δ, k = 1, . . . , N , can be equivalently written as ℜ [s∗(k)s0(k)] ≥ 1 − δ2/2

for k = 1, . . . , N , which in turn amounts to enforcing

s(k) ∈ {ej2π
βk
M , ej2π

βk+1

M , . . . , ej2π
βk+δd−1

M },

where

βk = [M arg(s0(k))/(2π)]− ⌊[M arccos(1− δ2/2)]/(2π)⌋
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depends on s0(k) and δ,

δd =





1 + 2⌊M arccos(1−δ2/2)
2π

⌋ δ ∈ [0, 2)

M δ = 2

depends only on δ [24].

Thus, problem (6.20) is equivalent to:

P ′
2






max
s

∣∣sT
(
w(n−1)∗ ⊙ p(νdT )

) ∣∣2

sTΘc
(
w(n−1)

)
s∗ + σ2

n‖w(n−1)‖2

s.t. arg(s(k)) ∈ 2π
M

[βk, βk + 1, . . . , βk + δd − 1] ,

|s(k)| = 1, k = 1, . . . , N.

. (6.21)

Let us observe that problem P ′
2, even in the simpler formulation correspond-

ing to ǫ = 2, is generally NP-hard, consequently one cannot find polynomial

time algorithms for computing its optimal solutions. As a consequence, in

the following, we focus on approximation techniques and propose a relaxation

and randomization algorithm which provides a randomized feasible solution

of (6.21). Thus, using S and M defined respectively in (6.14) and (6.15), re-
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sorting to the same relaxation procedure as in (6.16)-(6.19), and following the

same steps as in [24, pp. 13-14], a randomized feasible solution s(⋆) to problem

Pd
s
(n)

can be computed using algorithm Algorithm 9.

Algorithm 9 : Radar Quantized Phase Code Optimization

Input: M , S, H, {βi}, M , δd.

Output: A randomized approximate solution s(⋆) of Pd
s
(n)

;

1: Let (X⋆, u⋆) be an optimal solution to problem (6.19).

2: Denote by X̂ = X⋆/u⋆.

3: Generate a random vector (ξ)h ∈ CN , h = 1, . . . , H, from the complex normal

distribution NC(0,W ) where W = X̂ ⊙ ydy
†
d, with yd = [e−j

2π
M
β1, . . . , e−j

2π
M
βN ]T .

4: Let (s(k))h = y∗d(k)µ((ξk)h), k = 1, . . . , N , h = 1, . . . , H, where

µ(x) =





1, if arg(x) ∈ [0, 2π 1
δd
);

ej2π
1
M , if arg(x) ∈ [2π 1

δd
, 2π 2

δd
);

...

ej2π
δd−1

M , if arg(x) ∈ [2π δd−1
δd
, 2π).

5: Compute

th =
tr
(
s
†
hSsh

)

tr
(
s
†
hMsh

) , h = 1 . . . , H.

6: Pick the maximal value over {t1, . . . , tH}, say t1, and output s(⋆) = s1.

As for Algorithm 8, the H randomizations involved into steps 3-6 are meant

to improve the approximation quality; moreover, the computational complex-

ity is mostly related to the solution of the SDP problem (O(N3.5) flops). Finally,
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also with reference to the finite alphabet case, a modest number of random-

izations is sufficient to ensure satisfactory performances.

6.3.3 Transmit-Receive System Design: Optimization Pro-

cedure

In this subsection, the proposed sequential optimization procedures for the

receive filter and the radar code are summarized and schematized respectively

as Algorithm 10 for the continuous alphabet case and Algorithm 11 for the

finite alphabet case. To trigger the recursion, an initial radar code s(0), from

which we obtain the optimal receive filter w(0), is required; a natural choice is

obviously s(0) = s0.

The computational complexity, connected with the implementation of both

Algorithm 10 and Algorithm 11, depends on the number of iterations N

as well as on and the complexity involved in each iteration. Precisely, the

overall complexity is linear with respect to N , while each iteration includes the

computation of the inverse of Σc
(
s(n)
)

and the complexity effort of Algorithm

8 and Algorithm 9, respectively. The former is in the order of O(N3) [69].

The latter, for a modest number of randomizations, is connected with the SDP
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Algorithm 10 : Transmit-Receive System Design

Input:
{
σ(r,i)

}
,
{
ν̄d(r,i) , ǫ(r,i)

}
, σ2

n, s0, νdT , H, δ, ζ.

Output: A solution (s⋆,w⋆) of Pc.

1: Set n = 0, s(n) = s0,

w(n) :=

(
Σc (s0) + σ2

nI
)−1

(s0 ⊙ p(νdT ))∥∥∥
(
Σc (s0) + σ2

nI
)−1/2

(s0 ⊙ p(νdT ))
∥∥∥
2 ,

and SINR(n) = SINR.

2: do

3: n := n + 1;

4: Construct the matrices

S =
(
w(n−1) ⊙ p(νdT )

∗) (w(n−1) ⊙ p(νdT )
∗)† and M = Θc

(
w(n−1)

)∗
+σ2

n‖w(n−1)‖2I,

and the parameters {γi}, δc.
5: Find a good quality solution s(⋆) to problem Pc

s
(n), through the use of Algo-

rithm 8.

6: Set

s(n) = argmax

{
|αT |2

∣∣w(n−1)†
(
s(n−1) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(n−1)

)
w(n−1) + σ2

n‖w(n−1)‖2
,

|αT |2
∣∣w(n−1)†

(
s(⋆) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(⋆)
)
w(n−1) + σ2

n‖w(n−1)‖2

} .

7: Construct the matrix Σc
(
s(n)
)
.

8: Solve problem Pw(n) finding an optimal receive filter

w(n) :=

(
Σc
(
s(n)
)
+ σ2

nI
)−1 (

s(n) ⊙ p(νdT )
)

∥∥∥
(
Σc
(
s(n)
)
+ σ2

nI
)−1/2 (

s(n) ⊙ p(νdT )
)∥∥∥

2 ,

and the value of the SINR for the pair
(
s(n),w(n)

)
.

9: Let SINR(n) = SINR.

10: until |SINR(n) − SINR(n−1)| ≤ ζ.

11: Output s⋆ = s(n) and w⋆ = w(n).
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Algorithm 11 : Transmit-Receive System Design

Input:
{
σ(r,i)

}
,
{
ν̄d(r,i) , ǫ(r,i)

}
,σ2
n,s0,νdT ,H,δ,ζ,M .

Output: A solution (s⋆,w⋆) of Pd.

1: Set n = 0, s(n) = s0,

w(n) :=

(
Σc (s0) + σ2

nI
)−1

(s0 ⊙ p(νdT ))∥∥∥
(
Σc (s0) + σ2

nI
)−1/2

(s0 ⊙ p(νdT ))
∥∥∥
2 ,

and SINR(n) = SINR.

2: do

3: n := n + 1;

4: Construct the matrices

S =
(
w(n−1) ⊙ p(νdT )

∗) (w(n−1) ⊙ p(νdT )
∗)† and M = Θc

(
w(n−1)

)∗
+σ2

n‖w(n−1)‖2I,

and the parameters {βi}, δd.
5: Find a good quality solution s(⋆) of problem Pd

s
(n)

, through the use of Algo-

rithm 9.

6: Set

s(n) = argmax

{
|αT |2

∣∣w(n−1)†
(
s(n−1) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(n−1)

)
w(n−1) + σ2

n‖w(n−1)‖2
,

|αT |2
∣∣w(n−1)†

(
s(⋆) ⊙ p(νdT )

) ∣∣2

w(n−1)†Σc
(
s(⋆)
)
w(n−1) + σ2

n‖w(n−1)‖2

} .

7: Construct the matrix Σc
(
s(n)
)
.

8: Solve problem Pw(n) finding an optimal receive filter

w(n) :=

(
Σc
(
s(n)
)
+ σ2

nI
)−1 (

s(n) ⊙ p(νdT )
)

∥∥∥
(
Σc
(
s(n)
)
+ σ2

nI
)−1/2 (

s(n) ⊙ p(νdT )
)∥∥∥

2 ,

and the value of the SINR for the pair
(
s(n),w(n)

)
.

9: Let SINR(n) = SINR.

10: until |SINR(n) − SINR(n−1)| ≤ ζ.

11: Output s⋆ = s(n) and w⋆ = w(n).
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solution, i.e. O(N3.5) [99].

6.4 Performance Analysis

In this section, we present the performance analysis of the proposed algo-

rithm for the joint optimization of the radar code and the receive filter. We

consider an L-band radar whose operating frequency is f0 = 1.4 GHz, and that

exploits a broadside array with Na = 21 elements pointing in the range-azimuth

bin of interest (0, 0). Specifically, we consider a uniformly weighted linear array

with uniform spacing equal to d = λ/2. Consequently, the radiation pattern is

given by:

G(θ) =






1

Na

sin
(
Na

π

2
cos(θ)

)

sin
(π
2
cos(θ)

) if 0 ≤ θ ≤ π

10−3 if π ≤ θ ≤ 2π

.

We focus on a scenario with a homogeneous range-azimuth clutter where the

number of range rings that interfere with the range-azimuth bin of interest

(0, 0) is Nc = 2 and the number of azimuth cells in each ring is L = 100. More-

over, we set the pulse train length to N = 20 and select, as similarity code s0,
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the N-dimensional generalized Barker code and its M-quantized version4 for

Algorithm 10 and Algorithm 11, respectively. With reference to the contin-

uous phase case, we remark that the choice for this similarity code is mainly

due to its autocorrelation properties, namely its minimal peak-to-sidelobe ra-

tio excluding the the outermost sidelobe. The description of generalized Barker

codes can be found in [72] and [73], also for other values of N . The exit condi-

tion that we implement to stop the procedure assumes ζ = 10−5, namely:

|SINR(n) − SINR(n−1)| ≤ 10−5.

The randomizations for both Algorithms 8 and 9 have been set to H = 100.

As to the parameters of the uniform clutter, we fix σ0
σ2n
Kr = CNRKr = 30

dB, a mean Doppler frequency ν̄d = 0, and Doppler uncertainty ǫ
2
= 0.35 for

each range-azimuth bin. Additionally, we suppose the presence of a target

with Signal to Noise Ratio (SNR) |αT |2
σ2n

= SNR = 10 dB and normalized Doppler

4Specifically, given the code s, we construct its M-quantized version sq as sq(k) = µ̄(s(k)),
k = 1, . . . , N , where the non-linearity µ̄(x) is defined by

µ̄(x) =





1, if arg(x) ∈ [0, 2π 1
M
)

ej2π
1

M , if arg(x) ∈ [2π 1
M
, 2π 2

M
)

...

ej2π
M−1

M , if arg(x) ∈ [2πM−1
M

, 2π)

.
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δ = 2;
δ = 1.7;
δ = 1.5;
δ = 1;
δ = 0.4;
δ = 0.1.

Figure 6.1: Algorithm 10 - SINR behavior for δ = [0.1, 0.4, 1, 1.5, 1.7, 2].

frequency νdT = −0.4.

The analysis is conducted in terms of the attainable SINR, in correspon-

dence of the devised transmit code and receive filter, as well as the shape of

the related auto- and cross-ambiguity function5.

In Figure 6.1, the SINR behavior, averaged over 100 independent trials of

Algorithm 10, is plotted versus the number of iterations, for different values

of the similarity parameter δ. As expected, increasing δ, the optimal value of

the SINR improves since the feasible set of the optimization problem becomes

larger and larger. Actually, performance gains up to 22 dB, with respect to

5We exploit the MATLAB c© toolbox SeDuMi [25] for solving the SDP relaxation, and the
MATLAB c© toolbox of [74] for plotting the ambiguity functions of the coded pulse trains.
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step zero of our procedure, corresponding to the traditional adaptation on

receive side only, can be observed for δ = 2. Of course, this is just a potential

value and in real conditions smaller gains could be experienced due to some

inaccuracies in the a-priori information. Let us also observe that the number

of iterations, required to achieve convergence, increases as well.

In Figures 6.2, the ambiguity function6 of a synthesized code s⋆, together

with that of the reference code s0, is plotted for two different sizes of the sim-

ilarity region. Indeed, we have an opposite behavior with respect to Figure

6.1. Precisely, increasing δ, the set of feasible points becomes larger and

larger, and better and better SINR performances are swapped for worse and

worse ambiguity behaviors.

In Figures 6.3, we analyze the frequency behavior of the radar code and

the receive filter, corresponding to δ = 2, for different values of the iteration

number (n = [0, 5, 20, 50]). Precisely, we plot the contour map of the cross-

ambiguity function,

g(n) (m, νd) =
∣∣∣w(n)†

(
Jm

(
s(n) ⊙ p (νd)

)) ∣∣∣
2

(6.22)

6We consider a coherent pulse train with ideal rectangular pulses of width Tp and pulse
repetition time Tr.
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(a) Ambiguity Function modulus of the radar
code s0.

(b) Algorithm 10- Ambiguity Function modulus
of the radar code s⋆ for δ=0.1

(c) Algorithm 10- Ambiguity Function modulus
of the radar code s⋆ for δ=1

(d) Algorithm 10- Ambiguity Function modulus
of the radar code s⋆ for δ=2

Figure 6.2: Ambiguity Function modulus, assuming Tr = 3Tp.

 
Distribution A:  Approved for public release; distribution is unlimited.



6.4 Performance Analysis 260

(a) Algorithm 10 - Cross-Ambiguity Function, in
dB, of the radar code and receive filter

(
s(0),w(0)

)
.

(b) Algorithm 10 - Cross-Ambiguity Function, in
dB, of the radar code and receive filter

(
s(5),w(5)

)
.

(c) Algorithm 10 - Cross-Ambiguity Function,
in dB, of the radar code and receive filter(
s(19),w(19)

)
.

(d) Algorithm 10 - Cross-Ambiguity Function,
in dB, of the radar code and receive filter(
s(50),w(50)

)
.

Figure 6.3: Algorithm 10 - Cross-Ambiguity Function, in dB.
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where m is the delay-lag and νd is the Doppler frequency of the incoming signal.

As forced by the design procedure, the cross-ambiguity function is equal to one

at (m, νd) = (0,−0.4), which is the range-Doppler position of the nominal target.

Moreover, lower and lower values of g(n) (m, νd) can be observed in the strip

0 ≤ m ≤ 2 −0, 35 ≤ m ≤ 0.35 as the iteration step n grows up. Interestingly, this

performance trend reflects the capability of the proposed joint transmit-receive

optimization procedure to sequentially refine the shape of the cross-ambiguity

function in order to get better and better clutter suppression levels.

In Figure 6.4, the SINR behavior, averaged over 100 independent trials of

Algorithm 11, is plotted versus the number of iterations, for different values

of the similarity parameter δ, and for M = 16. The same considerations as for

the analysis conducted in Figure 6.1 hold true; indeed, increasing δ, we ex-

perience better and better SINR values, due to the enlargement of the feasible

set. Performance gains up to approximatively 12 dB, with respect to step zero

of our procedure can be observed for δ = 2.

In Figures 6.5, the ambiguity function of a synthesized code s⋆, together

with that of the reference quantized code s
q
0, is plotted for three different sizes

of the similarity region, assuming M = 16. Again, we experience an opposite
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δ = 2;
δ = 1.7;
δ = 1.5;
δ = 1;
δ = 0.4;
δ = 0.1.

Figure 6.4: Algorithm 11 - SINR behavior for δ=[0.1, 0.4, 1, 1.5, 1.7, 2], M =16.

trend with respect to Figure 6.4, which reflects how δ rules the trade-off be-

tween SINR performance and ambiguity behavior. Precisely, increasing δ, the

set of feasible points becomes larger and larger, and better and better SINR

performances are swapped for worse and worse ambiguity shapes.

In Figure 6.6, we analyze the impact of the number of quantization level

on the devised code for a fixed similarity parameter δ = 2. As expected, the

achieved average SINR increases as the number of levels involved into the

quantization procedure increases. Indeed, the greater the cardinality of the

alphabet, the higher the degrees of freedom available in the choice of the radar

code.
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(b) Algorithm 11 - Ambiguity Function modu-
lus of the radar code s⋆ for δ=0.4.
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(c) Algorithm 11 - Ambiguity Function modu-
lus of the radar code s⋆ for δ=1.
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(d) Algorithm 11 - Ambiguity Function modu-
lus of the radar code s⋆ for δ=2.

Figure 6.5: Ambiguity Function modulus of the radar code, assuming Tr = 3Tp and

M = 16.
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M = 64;
M = 32;
M = 16;
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Algorithm 3

Figure 6.6: Algorithm 11 - SINR(n) behavior for δ = 2, M = [4, 8, 16, 32, 64]; Algorithm

10 (o-marked violet dashed line).

6.5 Conclusions

In this chapter, we have considered the problem of cognitive constant enve-

lope transmit signal and receive filter joint optimization in a signal-dependent

clutter environment. We have devised iterative algorithms trying to optimize

the SINR while accounting for a similarity constraint on the transmitted se-

quence. At each step, the proposed procedures require the solution of both

convex and NP-hard problems. In order to find a good quality solution to the

latter, we have resorted to relaxation and randomization techniques. At the

analysis stage, we have assessed the performance of the proposed algorithms
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in terms of average SINR (versus the number of iterations) and ambiguity func-

tion of the resulting phase code and cross-ambiguity function of the transmit

signal and receive filter pair. Furthermore, with reference to the finite alphabet

case, we analyzed the impact of the quantization level on the system perfor-

mance. The results have highlighted that, in the presence of a perfect a-priori

knowledge, with a modest number of trials, significant SINR gains (up to 22

dB or 12 dB, respectively) can be obtained jointly optimizing the transmitter

and receiver. Possible future research tracks might concern the study of fur-

ther constraints on the receive filter, so as to keep under control other key

parameters such as the Integrated-to-Sidelobe Level or the Peak-to-Sidelobe

Level.
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